CL-RAG: Bridging the Gap in Retrieval-Augmented Generation with Curriculum Learning
- URL: http://arxiv.org/abs/2505.10493v1
- Date: Thu, 15 May 2025 16:53:04 GMT
- Title: CL-RAG: Bridging the Gap in Retrieval-Augmented Generation with Curriculum Learning
- Authors: Shaohan Wang, Licheng Zhang, Zheren Fu, Zhendong Mao,
- Abstract summary: Retrieval-Augmented Generation (RAG) is an effective method to enhance the capabilities of large language models (LLMs)<n>Existing methods focus on optimizing the retriever or generator in the RAG system by directly utilizing the top-k retrieved documents.<n>In this paper, we propose a multi-stage Curriculum Learning based RAG system training framework, named CL-RAG.
- Score: 23.424936103502976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) is an effective method to enhance the capabilities of large language models (LLMs). Existing methods focus on optimizing the retriever or generator in the RAG system by directly utilizing the top-k retrieved documents. However, the documents effectiveness are various significantly across user queries, i.e. some documents provide valuable knowledge while others totally lack critical information. It hinders the retriever and generator's adaptation during training. Inspired by human cognitive learning, curriculum learning trains models using samples progressing from easy to difficult, thus enhancing their generalization ability, and we integrate this effective paradigm to the training of the RAG system. In this paper, we propose a multi-stage Curriculum Learning based RAG system training framework, named CL-RAG. We first construct training data with multiple difficulty levels for the retriever and generator separately through sample evolution. Then, we train the model in stages based on the curriculum learning approach, thereby optimizing the overall performance and generalization of the RAG system more effectively. Our CL-RAG framework demonstrates consistent effectiveness across four open-domain QA datasets, achieving performance gains of 2% to 4% over multiple advanced methods.
Related papers
- Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
We introduce Omni-Thinker, a unified reinforcement learning framework that enhances large language models (LLMs) performance across diverse tasks.<n>Our approach enables consistent optimization across task types and scales RL-based training to subjective domains.<n> Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging.
arXiv Detail & Related papers (2025-07-20T01:50:16Z) - LTRR: Learning To Rank Retrievers for LLMs [53.285436927963865]
We show that routing-based RAG systems can outperform the best single-retriever-based systems.<n>Performance gains are especially pronounced in models trained with the Answer Correctness (AC) metric.<n>As part of the SIGIR 2025 LiveRAG challenge, our submitted system demonstrated the practical viability of our approach.
arXiv Detail & Related papers (2025-06-16T17:53:18Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG) enables large language models to access broader knowledge sources.<n>We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance.<n>We present KARE-RAG, which improves knowledge utilization through three key innovations.
arXiv Detail & Related papers (2025-06-03T06:31:17Z) - Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models [83.8639566087953]
We propose a direct retrieval-augmented optimization framework, named DRO, that enables end-to-end training of two key components.<n>DRO alternates between two phases: (i) document permutation estimation and (ii) re-weighted, progressively improving RAG components.<n>Our theoretical analysis reveals that DRO is analogous to policy-gradient methods in reinforcement learning.
arXiv Detail & Related papers (2025-05-05T23:54:53Z) - Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing [4.874077691069634]
RAG has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations.<n>Current multi-round RAG systems may continue searching even when enough information has already been retrieved.<n>This paper introduces a new framework, textbfSIM-RAG, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities.
arXiv Detail & Related papers (2025-05-05T17:39:35Z) - Revisiting Robust RAG: Do We Still Need Complex Robust Training in the Era of Powerful LLMs? [69.38149239733994]
We investigate whether complex robust training strategies remain necessary as model capacity grows.<n>We find that as models become more powerful, the performance gains brought by complex robust training methods drop off dramatically.<n>Our findings suggest that RAG systems can benefit from simpler architectures and training strategies as models become more powerful.
arXiv Detail & Related papers (2025-02-17T03:34:31Z) - RAG-Reward: Optimizing RAG with Reward Modeling and RLHF [8.911260109659489]
Retrieval-augmented generation (RAG) enhances Large Language Models (LLMs) with relevant and up-to-date knowledge.<n>The role of reward models in reinforcement learning for optimizing RAG remains underexplored.<n>We introduce textbfRAG-Reward, a framework designed to develop reward models.
arXiv Detail & Related papers (2025-01-22T22:59:19Z) - Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation [20.420575358183687]
Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs)
Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG.
We propose a novel framework, FiGRet, which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective.
arXiv Detail & Related papers (2024-11-06T14:42:39Z) - RAG-DDR: Optimizing Retrieval-Augmented Generation Using Differentiable Data Rewards [78.74923079748521]
Retrieval-Augmented Generation (RAG) has proven its effectiveness in mitigating hallucinations in Large Language Models (LLMs) by retrieving knowledge from external resources.<n>Current approaches use instruction tuning to optimize LLMs, improving their ability to utilize retrieved knowledge.<n>We propose a Differentiable Data Rewards ( DDR) method, which trains RAG systems by aligning data preferences between different RAG modules.
arXiv Detail & Related papers (2024-10-17T12:53:29Z) - RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation [8.377398103067508]
We introduce RAG Foundry, an open-source framework for augmenting large language models for RAG use cases.
RAG Foundry integrates data creation, training, inference and evaluation into a single workflow.
We demonstrate the framework effectiveness by augmenting and fine-tuning Llama-3 and Phi-3 models with diverse RAG configurations.
arXiv Detail & Related papers (2024-08-05T15:16:24Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
retrieval-augmented generation (RAG) has attracted considerable research attention.<n>Existing RAG toolkits are often heavy and inflexibly, failing to meet the customization needs of researchers.<n>Our toolkit has implemented 16 advanced RAG methods and gathered and organized 38 benchmark datasets.
arXiv Detail & Related papers (2024-05-22T12:12:40Z) - Retrieval as Attention: End-to-end Learning of Retrieval and Reading
within a Single Transformer [80.50327229467993]
We show that a single model trained end-to-end can achieve both competitive retrieval and QA performance.
We show that end-to-end adaptation significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings.
arXiv Detail & Related papers (2022-12-05T04:51:21Z) - Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation [77.62366712130196]
We present the winning entry at the fast domain adaptation task of DSTC8, a hybrid generative-retrieval model based on GPT-2 fine-tuned to the multi-domain MetaLWOz dataset.
Our model uses retrieval logic as a fallback, being SoTA on MetaLWOz in human evaluation (>4% improvement over the 2nd place system) and attaining competitive generalization performance in adaptation to the unseen MultiWOZ dataset.
arXiv Detail & Related papers (2020-03-03T18:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.