PnPXAI: A Universal XAI Framework Providing Automatic Explanations Across Diverse Modalities and Models
- URL: http://arxiv.org/abs/2505.10515v1
- Date: Thu, 15 May 2025 17:21:54 GMT
- Title: PnPXAI: A Universal XAI Framework Providing Automatic Explanations Across Diverse Modalities and Models
- Authors: Seongun Kim, Sol A Kim, Geonhyeong Kim, Enver Menadjiev, Chanwoo Lee, Seongwook Chung, Nari Kim, Jaesik Choi,
- Abstract summary: We introduce bfXAI, a universal XAI framework that supports diverse data modalities.<n>We validate the framework's effectiveness through user surveys and showcase its versatility across various domains.
- Score: 22.160351661755904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, post hoc explanation methods have emerged to enhance model transparency by attributing model outputs to input features. However, these methods face challenges due to their specificity to certain neural network architectures and data modalities. Existing explainable artificial intelligence (XAI) frameworks have attempted to address these challenges but suffer from several limitations. These include limited flexibility to diverse model architectures and data modalities due to hard-coded implementations, a restricted number of supported XAI methods because of the requirements for layer-specific operations of attribution methods, and sub-optimal recommendations of explanations due to the lack of evaluation and optimization phases. Consequently, these limitations impede the adoption of XAI technology in real-world applications, making it difficult for practitioners to select the optimal explanation method for their domain. To address these limitations, we introduce \textbf{PnPXAI}, a universal XAI framework that supports diverse data modalities and neural network models in a Plug-and-Play (PnP) manner. PnPXAI automatically detects model architectures, recommends applicable explanation methods, and optimizes hyperparameters for optimal explanations. We validate the framework's effectiveness through user surveys and showcase its versatility across various domains, including medicine and finance.
Related papers
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - XEdgeAI: A Human-centered Industrial Inspection Framework with Data-centric Explainable Edge AI Approach [2.0209172586699173]
This paper introduces a novel XAI-integrated Visual Quality Inspection framework.
Our framework incorporates XAI and the Large Vision Language Model to deliver human-centered interpretability.
This approach paves the way for the broader adoption of reliable and interpretable AI tools in critical industrial applications.
arXiv Detail & Related papers (2024-07-16T14:30:24Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
Support of artificial intelligence based decision-making is a key element in future 6G networks.<n>In such applications, using AI as black-box models is risky and challenging.<n>We propose a novel-based XAI-CHEST framework that is oriented toward channel estimation in wireless communications.
arXiv Detail & Related papers (2024-07-09T16:24:21Z) - EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods [1.6383837447674294]
This paper brings together various benchmark datasets and novel performance metrics in an initial benchmarking platform.
Our datasets incorporate ground truth explanations for class-conditional features.
This platform assesses the performance of post-hoc XAI methods in the quality of the explanations they produce.
arXiv Detail & Related papers (2024-05-20T14:16:06Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
We propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX.
REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance.
arXiv Detail & Related papers (2023-07-18T04:26:33Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - Efficient XAI Techniques: A Taxonomic Survey [40.74369038951756]
We review existing techniques of XAI acceleration into efficient non-amortized and efficient amortized methods.
We analyze the limitations of an efficient XAI pipeline from the perspectives of the training phase, the deployment phase, and the use scenarios.
arXiv Detail & Related papers (2023-02-07T03:15:38Z) - Optimizing Explanations by Network Canonization and Hyperparameter
Search [74.76732413972005]
Rule-based and modified backpropagation XAI approaches often face challenges when being applied to modern model architectures.
Model canonization is the process of re-structuring the model to disregard problematic components without changing the underlying function.
In this work, we propose canonizations for currently relevant model blocks applicable to popular deep neural network architectures.
arXiv Detail & Related papers (2022-11-30T17:17:55Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.