The Hitchhikers Guide to Production-ready Trustworthy Foundation Model powered Software (FMware)
- URL: http://arxiv.org/abs/2505.10640v2
- Date: Mon, 02 Jun 2025 20:08:34 GMT
- Title: The Hitchhikers Guide to Production-ready Trustworthy Foundation Model powered Software (FMware)
- Authors: Kirill Vasilevski, Benjamin Rombaut, Gopi Krishnan Rajbahadur, Gustavo A. Oliva, Keheliya Gallaba, Filipe R. Cogo, Jiahuei Lin, Dayi Lin, Haoxiang Zhang, Bouyan Chen, Kishanthan Thangarajah, Ahmed E. Hassan, Zhen Ming Jiang,
- Abstract summary: Foundation Models (FMs) are reshaping the software industry by enabling FMware, systems that integrate these FMs as core components.<n>In this KDD 2025 tutorial, we present a comprehensive exploration of FMware that combines a curated catalogue of challenges with real-world production concerns.
- Score: 10.438253230778844
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundation Models (FMs) such as Large Language Models (LLMs) are reshaping the software industry by enabling FMware, systems that integrate these FMs as core components. In this KDD 2025 tutorial, we present a comprehensive exploration of FMware that combines a curated catalogue of challenges with real-world production concerns. We first discuss the state of research and practice in building FMware. We further examine the difficulties in selecting suitable models, aligning high-quality domain-specific data, engineering robust prompts, and orchestrating autonomous agents. We then address the complex journey from impressive demos to production-ready systems by outlining issues in system testing, optimization, deployment, and integration with legacy software. Drawing on our industrial experience and recent research in the area, we provide actionable insights and a technology roadmap for overcoming these challenges. Attendees will gain practical strategies to enable the creation of trustworthy FMware in the evolving technology landscape.
Related papers
- Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
We discuss the progress the field has made so far-through advances like structured outputs, process supervision, and test-time compute.<n>We outline several future directions for research to enable the development of modular and reliable LLM-based systems.
arXiv Detail & Related papers (2024-11-25T07:48:31Z) - Software Performance Engineering for Foundation Model-Powered Software (FMware) [6.283211168007636]
Foundation Models (FMs) like Large Language Models (LLMs) are revolutionizing software development.
This paper highlights the significance of Software Performance Engineering (SPE) in FMware.
We identify four key challenges: cognitive architecture design, communication protocols, tuning and optimization, and deployment.
arXiv Detail & Related papers (2024-11-14T16:42:19Z) - From Cool Demos to Production-Ready FMware: Core Challenges and a Technology Roadmap [12.313710667597897]
We conduct a semi-structured thematic synthesis to identify the key challenges in productionizing FMware across diverse data sources.<n>We identify critical issues in FM selection, data and model alignment, prompt engineering, agent orchestration, system testing, and deployment.<n>We discuss needed technologies and strategies to address these challenges and offer guidance on how to enable the transition from demonstration systems to scalable, production-ready FMware solutions.
arXiv Detail & Related papers (2024-10-28T07:16:00Z) - Foundation Model Engineering: Engineering Foundation Models Just as Engineering Software [8.14005646330662]
Foundation Models (FMs) become a new type of software by treating data and models as the source code.
We outline our vision of introducing Foundation Model (FM) engineering, a strategic response to the anticipated FM crisis.
arXiv Detail & Related papers (2024-07-11T04:40:02Z) - Rethinking Software Engineering in the Foundation Model Era: A Curated
Catalogue of Challenges in the Development of Trustworthy FMware [13.21876203209586]
We identify 10 key SE4FMware challenges that have caused enterprise FMware development to be unproductive, costly, and risky.
We present FMArts, which is our long-term effort towards creating a cradle-to-grave platform for the engineering of trustworthy FMware.
arXiv Detail & Related papers (2024-02-25T00:53:16Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
We present a systematic analysis of MM-VUFMs specifically designed for road scenes.
Our objective is to provide a comprehensive overview of common practices, referring to task-specific models, unified multi-modal models, unified multi-task models, and foundation model prompting techniques.
We provide insights into key challenges and future trends, such as closed-loop driving systems, interpretability, embodied driving agents, and world models.
arXiv Detail & Related papers (2024-02-05T12:47:09Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) focuses on the research, modification, and design of foundation models (FM) based on the model interface.<n>The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing.<n>This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM.
arXiv Detail & Related papers (2023-10-12T10:20:36Z) - FETA: Towards Specializing Foundation Models for Expert Task
Applications [49.57393504125937]
Foundation Models (FMs) have demonstrated unprecedented capabilities including zero-shot learning, high fidelity data synthesis, and out of domain generalization.
We show in this paper that FMs still have poor out-of-the-box performance on expert tasks.
We propose a first of its kind FETA benchmark built around the task of teaching FMs to understand technical documentation.
arXiv Detail & Related papers (2022-09-08T08:47:57Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.