A Systematic Analysis of Base Model Choice for Reward Modeling
- URL: http://arxiv.org/abs/2505.10775v1
- Date: Fri, 16 May 2025 01:27:03 GMT
- Title: A Systematic Analysis of Base Model Choice for Reward Modeling
- Authors: Kian Ahrabian, Pegah Jandaghi, Negar Mokhberian, Sai Praneeth Karimireddy, Jay Pujara,
- Abstract summary: We present a systematic analysis of the effect of base model selection on reward modeling performance.<n>Results show that the performance can be improved by up to 14% compared to the most common (i.e., default) choice.
- Score: 19.061286145419732
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reinforcement learning from human feedback (RLHF) and, at its core, reward modeling have become a crucial part of training powerful large language models (LLMs). One commonly overlooked factor in training high-quality reward models (RMs) is the effect of the base model, which is becoming more challenging to choose given the rapidly growing pool of LLMs. In this work, we present a systematic analysis of the effect of base model selection on reward modeling performance. Our results show that the performance can be improved by up to 14% compared to the most common (i.e., default) choice. Moreover, we showcase the strong statistical relation between some existing benchmarks and downstream performances. We also demonstrate that the results from a small set of benchmarks could be combined to boost the model selection ($+$18% on average in the top 5-10). Lastly, we illustrate the impact of different post-training steps on the final performance and explore using estimated data distributions to reduce performance prediction error.
Related papers
- GRAM: A Generative Foundation Reward Model for Reward Generalization [48.63394690265176]
We develop a generative reward model that is first trained via large-scale unsupervised learning and then fine-tuned via supervised learning.<n>This model generalizes well across several tasks, including response ranking, reinforcement learning from human feedback, and task adaptation with fine-tuning.
arXiv Detail & Related papers (2025-06-17T04:34:27Z) - Rethinking Reward Model Evaluation Through the Lens of Reward Overoptimization [15.729285736811383]
Reward models play a crucial role in reinforcement learning from human feedback.<n>Existing benchmarks for reward models show a weak correlation with the performance of optimized policies.
arXiv Detail & Related papers (2025-05-19T06:43:08Z) - Feasible Learning [78.6167929413604]
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample.<n>Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
arXiv Detail & Related papers (2025-01-24T20:39:38Z) - SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation [81.36747103102459]
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications.<n>Current state-of-the-art methods focus on training innovative architectural designs on confined datasets.<n>We investigate the impact of scaling up EHPS towards a family of generalist foundation models.
arXiv Detail & Related papers (2025-01-16T18:59:46Z) - RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style [37.97757796124621]
RM-Bench is a novel benchmark designed to evaluate reward models based on their sensitivity to subtle content differences and resistance to style biases.
We evaluate nearly 40 reward models on RM-Bench and find that even state-of-the-art models achieve an average performance of only 46.6%.
arXiv Detail & Related papers (2024-10-21T16:48:26Z) - Towards Understanding the Influence of Reward Margin on Preference Model Performance [8.891183078634786]
This study introduces a novel method to estimate the preference differences without the need for detailed, exhaustive labels from human annotators.
Our experimental results provide empirical evidence that incorporating margin values into the training process significantly improves the effectiveness of reward models.
arXiv Detail & Related papers (2024-04-07T12:10:04Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
A popular workaround is to train a robust model by re-weighting training examples based on a secondary biased model.
Here, the underlying assumption is that the biased model resorts to shortcut features.
We introduce a fine-tuning strategy that incorporates the similarity between the main and biased model attribution scores in a Product of Experts loss function.
arXiv Detail & Related papers (2023-02-06T15:21:41Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Model Embedding Model-Based Reinforcement Learning [4.566180616886624]
Model-based reinforcement learning (MBRL) has shown its advantages in sample-efficiency over model-free reinforcement learning (MFRL)
Despite the impressive results it achieves, it still faces a trade-off between the ease of data generation and model bias.
We propose a simple and elegant model-embedding model-based reinforcement learning (MEMB) algorithm in the framework of the probabilistic reinforcement learning.
arXiv Detail & Related papers (2020-06-16T15:10:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.