Graph and Simplicial Complex Prediction Gaussian Process via the Hodgelet Representations
- URL: http://arxiv.org/abs/2505.10877v1
- Date: Fri, 16 May 2025 05:33:42 GMT
- Title: Graph and Simplicial Complex Prediction Gaussian Process via the Hodgelet Representations
- Authors: Mathieu Alain, So Takao, Xiaowen Dong, Bastian Rieck, Emmanuel Noutahi,
- Abstract summary: We extend the Gaussian process framework to simplicial complexes (SCs), enabling the handling of edge-level attributes and attributes supported on higher-order simplices.<n>We demonstrate that our framework enhances the predictions across various applications, paving the way for GPs to be more widely used for graph and SC-level predictions.
- Score: 18.356495042963267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the labels of graph-structured data is crucial in scientific applications and is often achieved using graph neural networks (GNNs). However, when data is scarce, GNNs suffer from overfitting, leading to poor performance. Recently, Gaussian processes (GPs) with graph-level inputs have been proposed as an alternative. In this work, we extend the Gaussian process framework to simplicial complexes (SCs), enabling the handling of edge-level attributes and attributes supported on higher-order simplices. We further augment the resulting SC representations by considering their Hodge decompositions, allowing us to account for homological information, such as the number of holes, in the SC. We demonstrate that our framework enhances the predictions across various applications, paving the way for GPs to be more widely used for graph and SC-level predictions.
Related papers
- OMEGA: A Low-Latency GNN Serving System for Large Graphs [8.51634655687174]
Graph Neural Networks (GNNs) have been widely adopted for their ability to compute expressive node representations in graph datasets.<n>Existing approximation techniques in training can mitigate the overheads but, in serving, still lead to high latency and/or accuracy loss.<n>We propose OMEGA, a system that enables low-latency GNN serving for large graphs with minimal accuracy loss.
arXiv Detail & Related papers (2025-01-15T03:14:18Z) - Efficient Graph Condensation via Gaussian Process [11.304327316816561]
Graph condensation reduces the size of large graphs while preserving performance.<n>Existing methods often rely on bi-level optimization, requiring extensive GNN training and limiting their scalability.<n>This paper proposes Graph Condensation via Gaussian Process (GCGP), a novel and computationally efficient approach to graph condensation.
arXiv Detail & Related papers (2025-01-05T14:43:07Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Graph Neural Network-Inspired Kernels for Gaussian Processes in
Semi-Supervised Learning [4.644263115284322]
Graph neural networks (GNNs) emerged recently as a promising class of models for graph-structured data in semi-supervised learning.
We introduce this inductive bias into GPs to improve their predictive performance for graph-structured data.
We show that these graph-based kernels lead to competitive classification and regression performance, as well as advantages in time, compared with the respective GNNs.
arXiv Detail & Related papers (2023-02-12T01:07:56Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
Graph neural networks (GNNs) have demonstrated great success in representation learning for graph-structured data.
In this paper, we propose a novel framework - i.e., namely Adaptive Kernel Graph Neural Network (AKGNN)
AKGNN learns to adapt to the optimal graph kernel in a unified manner at the first attempt.
Experiments are conducted on acknowledged benchmark datasets and promising results demonstrate the outstanding performance of our proposed AKGNN.
arXiv Detail & Related papers (2021-12-08T20:23:58Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
We propose a novel architecture called the Self-Constructing Graph (SCG), which makes use of learnable latent variables to generate embeddings.
SCG can automatically obtain optimized non-local context graphs from complex-shaped objects in aerial imagery.
We demonstrate the effectiveness and flexibility of the proposed SCG on the publicly available ISPRS Vaihingen dataset.
arXiv Detail & Related papers (2020-03-15T21:55:24Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.