Digital quantum simulation of squeezed states via enhanced bosonic encoding in a superconducting quantum processor
- URL: http://arxiv.org/abs/2505.10895v2
- Date: Thu, 12 Jun 2025 02:33:52 GMT
- Title: Digital quantum simulation of squeezed states via enhanced bosonic encoding in a superconducting quantum processor
- Authors: Hengyue Li, Yusheng Yang, Zhe-Hui Wang, Shuxin Xie, Zilong Zha, Hantao Sun, Jie Chen, Jian Sun, Shenggang Ying,
- Abstract summary: We present a fully digital approach for simulating single-mode squeezed states on a superconducting quantum processor.<n>By mapping up to 2n photonic Fock states onto n qubits, our framework leverages Gray-code-based encodings to reduce gate overhead.<n>We further optimize resource usage by restricting the simulation on Fock states with even number of photons only.
- Score: 33.56337116542515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a fully digital approach for simulating single-mode squeezed states on a superconducting quantum processor using an enhanced bosonic encoding strategy. By mapping up to 2^{n} photonic Fock states onto n qubits, our framework leverages Gray-code-based encodings to reduce gate overhead compared to conventional one-hot or binary mappings. We further optimize resource usage by restricting the simulation on Fock states with even number of photons only, effectively doubling the range of photon numbers that can be represented for a given number of qubits. To overcome noise and finite coherence in current hardware, we employ a variational quantum simulation protocol, which adapts shallow, parameterized circuits through iterative optimization. Implemented on the Zuchongzhi-2 superconducting platform, our method demonstrates squeezed-state dynamics across a parameter sweep from vacuum state preparation (r=0) to squeezing levels exceeding the Fock space truncation limit (r>1.63). Experimental results, corroborated by quantum state tomography and Wigner-function analysis, confirm high-fidelity state preparation and demonstrate the potential of Gray-code-inspired techniques for realizing continuous-variable physics on near-term, qubit-based quantum processors.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Codesigned counterdiabatic quantum optimization on a photonic quantum processor [6.079051215256144]
We focus on the counterdiabatic protocol with a codesigned approach to implement this algorithm on a photonic quantum processor.
We develop and implement an optimized counterdiabatic method by tackling the higher-order many-body interaction terms.
We experimentally demonstrate the advantages of a codesigned mapping of counterdiabatic quantum dynamics for quantum computing on photonic platforms.
arXiv Detail & Related papers (2024-09-26T15:08:19Z) - Linear-optical approach to encoding qubits into harmonic-oscillator modes via quantum walks [0.9668407688201361]
We propose a linear-optical scheme that allows encoding grid-state quantum bits (qubits) into a bosonic mode.<n>We employ the cat state as a quantum coin that enables encoding approximate Gottesman-Kitaev-Preskill (GKP) qubits through quantum walk of a squeezed vacuum state in phase space.
arXiv Detail & Related papers (2024-04-25T13:18:08Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit [33.7054351451505]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.<n>Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.<n>Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Efficient High-Fidelity Flying Qubit Shaping [0.0]
We formulate a theory for stimulated Raman emission which is applicable to a wide range of physical systems.
We find the upper bound for the photonic pulse emission efficiency of arbitrary matter qubit states for imperfect emitters.
Protocols for the production of time-bin encoding and spin-photon entanglement are proposed.
arXiv Detail & Related papers (2022-12-21T17:19:39Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Non-Gaussian photonic state engineering with the quantum frequency
processor [0.7758302353877525]
Non-Gaussian quantum states of light are critical resources for optical quantum information processing.
We introduce a generic approach for non-Gaussian state production from input states populating discrete frequency bins.
arXiv Detail & Related papers (2021-08-18T17:58:42Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - All-optical Quantum State Engineering for Rotation-symmetric Bosonic
States [0.0]
We propose and analyze a method to generate a variety of non-Gaussian states using coherent photon subtraction.
Our method can be readily implemented with current quantum photonic technologies.
arXiv Detail & Related papers (2021-05-23T22:43:23Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.