NeuralSurv: Deep Survival Analysis with Bayesian Uncertainty Quantification
- URL: http://arxiv.org/abs/2505.11054v1
- Date: Fri, 16 May 2025 09:53:21 GMT
- Title: NeuralSurv: Deep Survival Analysis with Bayesian Uncertainty Quantification
- Authors: Mélodie Monod, Alessandro Micheli, Samir Bhatt,
- Abstract summary: We introduce NeuralSurv, the first deep survival model to incorporate Bayesian uncertainty quantification.<n>For efficient posterior inference, we introduce a mean-field variational algorithm with coordinate-ascent updates that scale linearly in model size.<n>In experiments, NeuralSurv delivers superior calibration compared to state-of-the-art deep survival models.
- Score: 45.560812800359685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce NeuralSurv, the first deep survival model to incorporate Bayesian uncertainty quantification. Our non-parametric, architecture-agnostic framework flexibly captures time-varying covariate-risk relationships in continuous time via a novel two-stage data-augmentation scheme, for which we establish theoretical guarantees. For efficient posterior inference, we introduce a mean-field variational algorithm with coordinate-ascent updates that scale linearly in model size. By locally linearizing the Bayesian neural network, we obtain full conjugacy and derive all coordinate updates in closed form. In experiments, NeuralSurv delivers superior calibration compared to state-of-the-art deep survival models, while matching or exceeding their discriminative performance across both synthetic benchmarks and real-world datasets. Our results demonstrate the value of Bayesian principles in data-scarce regimes by enhancing model calibration and providing robust, well-calibrated uncertainty estimates for the survival function.
Related papers
- Self-Consistent Equation-guided Neural Networks for Censored Time-to-Event Data [11.550402345767141]
We propose a novel approach to non-parametric estimation of the conditional survival functions using the generative adversarial networks leveraging self-consistent equations.<n>The proposed method is model-free and does not require any parametric assumptions on the structure of the conditional survival function.
arXiv Detail & Related papers (2025-03-12T06:24:35Z) - A recursive Bayesian neural network for constitutive modeling of sands under monotonic loading [0.0]
In geotechnical engineering, models play a crucial role in describing soil behavior under varying loading conditions.<n>Data-driven deep learning (DL) models offer a promising alternative for developing predictive models.<n>When prediction is the primary focus, quantifying the predictive uncertainty of a trained DL model is crucial for informed decision-making.
arXiv Detail & Related papers (2025-01-17T10:15:03Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.<n>Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.<n>We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
We reinvigorate maximum likelihood estimation (MLE) for macroeconomic density forecasting through a novel neural network architecture with dedicated mean and variance hemispheres.
Our Hemisphere Neural Network (HNN) provides proactive volatility forecasts based on leading indicators when it can, and reactive volatility based on the magnitude of previous prediction errors when it must.
arXiv Detail & Related papers (2023-11-27T21:37:50Z) - Density Estimation with Autoregressive Bayesian Predictives [1.5771347525430772]
In the context of density estimation, the standard Bayesian approach is to target the posterior predictive.
We develop a novel parameterization of the bandwidth using an autoregressive neural network that maps the data into a latent space.
arXiv Detail & Related papers (2022-06-13T20:43:39Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.