Inexact Column Generation for Bayesian Network Structure Learning via Difference-of-Submodular Optimization
- URL: http://arxiv.org/abs/2505.11089v1
- Date: Fri, 16 May 2025 10:23:19 GMT
- Title: Inexact Column Generation for Bayesian Network Structure Learning via Difference-of-Submodular Optimization
- Authors: Yiran Yang, Rui Chen,
- Abstract summary: State-of-the-art BNSL IP formulations suffer from the exponentially large number of variables and constraints.<n>A standard approach in IP to address such challenges is to employ row and column generation techniques.<n>We show that our row and column generation approach yields solutions with higher quality than state-of-the-art score-based approaches.
- Score: 3.802887999217352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider a score-based Integer Programming (IP) approach for solving the Bayesian Network Structure Learning (BNSL) problem. State-of-the-art BNSL IP formulations suffer from the exponentially large number of variables and constraints. A standard approach in IP to address such challenges is to employ row and column generation techniques, which dynamically generate rows and columns, while the complex pricing problem remains a computational bottleneck for BNSL. For the general class of $\ell_0$-penalized likelihood scores, we show how the pricing problem can be reformulated as a difference of submodular optimization problem, and how the Difference of Convex Algorithm (DCA) can be applied as an inexact method to efficiently solve the pricing problems. Empirically, we show that, for continuous Gaussian data, our row and column generation approach yields solutions with higher quality than state-of-the-art score-based approaches, especially when the graph density increases, and achieves comparable performance against benchmark constraint-based and hybrid approaches, even when the graph size increases.
Related papers
- Exact and Heuristic Algorithms for Constrained Biclustering [0.0]
Biclustering, also known as co-clustering or two-way clustering, simultaneously partitions the rows and columns of a data matrix to reveal submatrices with coherent patterns.<n>We study constrained biclustering with pairwise constraints, namely must-link and cannot-link constraints, which specify whether objects should belong to the same or different biclusters.
arXiv Detail & Related papers (2025-08-07T15:29:22Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Generative diffusion models are popular in various cross-domain applications.<n>These models hold promise in tackling complex network optimization problems.<n>We propose a new framework for generative diffusion models called Diffusion Model-based Solution Generation.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - Machine Learning-Enhanced Ant Colony Optimization for Column Generation [5.82410475933163]
Column generation is a powerful technique for solving optimization problems that involve a large number of variables or columns.
We propose a novel method called machine learning enhanced ant colony optimization (MLACO), to efficiently generate multiple high-quality columns from a subproblem.
arXiv Detail & Related papers (2024-04-23T01:00:09Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Decision Diagram-Based Branch-and-Bound with Caching for Dominance and
Suboptimality Detection [9.175779296469194]
This paper presents new ingredients to speed up the search by exploiting the structure of dynamic programming models.
The key idea is to prevent the repeated expansion of nodes corresponding to the same dynamic programming states by querying expansion thresholds cached throughout the search.
Experiments show that the pruning brought by this caching mechanism allows significantly reducing the number of nodes expanded by the algorithm.
arXiv Detail & Related papers (2022-11-22T10:18:33Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Enhancing Column Generation by a Machine-Learning-Based Pricing
Heuristic for Graph Coloring [5.278929511653199]
Column Generation (CG) is an effective method for solving large-scale optimization problems.
We propose a Machine-Learning Pricing Heuristic that can generate many high-quality columns efficiently.
arXiv Detail & Related papers (2021-12-08T03:58:25Z) - Improved Acyclicity Reasoning for Bayesian Network Structure Learning
with Constraint Programming [0.0]
Learning the structure of a Bayesian network (BNSL) from discrete data is known to be an NP-hard task.
In this work, we propose a new time algorithm for discovering a subset of all possible cluster cuts.
We show that, despite being suboptimal, they improve performance by orders of magnitude.
The resulting solver also compares favourably with GOBNILP, a state-of-the-art solver for the BNSL problem.
arXiv Detail & Related papers (2021-06-23T09:46:11Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Consistent Second-Order Conic Integer Programming for Learning Bayesian
Networks [2.7473982588529653]
We study the problem of learning the sparse DAG structure of a BN from continuous observational data.
The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions.
We propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution.
arXiv Detail & Related papers (2020-05-29T00:13:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.