論文の概要: Hybrid-Emba3D: Geometry-Aware and Cross-Path Feature Hybrid Enhanced State Space Model for Point Cloud Classification
- arxiv url: http://arxiv.org/abs/2505.11099v1
- Date: Fri, 16 May 2025 10:30:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:14.680626
- Title: Hybrid-Emba3D: Geometry-Aware and Cross-Path Feature Hybrid Enhanced State Space Model for Point Cloud Classification
- Title(参考訳): ハイブリッドEmba3D:ポイントクラウド分類のための幾何認識とクロスパス特徴量拡張状態空間モデル
- Authors: Bin Liu, Chunyang Wang, Xuelian Liu, Guan Xi, Ge Zhang, Ziteng Yao, Mengxue Dong,
- Abstract要約: 本稿では、幾何学的特徴結合とクロスパス特徴ハイブリッド化により強化された双方向マンバモデルであるHybrid-Emba3Dを提案する。
デザインされたコラボレーティブ・フィーチャー・エンハンサーはデュアルパス・ハイブリダイゼーションを採用し、局所的な突然変異やスパースキーシグナルを効果的に処理する。
実験結果から,モデルNet40では新たなSOTA分類精度が95.99%向上し,0.03Mが加わった。
- 参考スコア(独自算出の注目度): 6.537771765793275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The point cloud classification tasks face the dual challenge of efficiently extracting local geometric features while maintaining model complexity. The Mamba architecture utilizes the linear complexity advantage of state space models (SSMs) to overcome the computational bottleneck of Transformers while balancing global modeling capabilities. However, the inherent contradiction between its unidirectional dependency and the unordered nature of point clouds impedes modeling spatial correlation in local neighborhoods, thus constraining geometric feature extraction. This paper proposes Hybrid-Emba3D, a bidirectional Mamba model enhanced by geometry-feature coupling and cross-path feature hybridization. The Local geometric pooling with geometry-feature coupling mechanism significantly enhances local feature discriminative power via coordinated propagation and dynamic aggregation of geometric information between local center points and their neighborhoods, without introducing additional parameters. The designed Collaborative feature enhancer adopts dual-path hybridization, effectively handling local mutations and sparse key signals, breaking through the limitations of traditional SSM long-range modeling. Experimental results demonstrate that the proposed model achieves a new SOTA classification accuracy of 95.99% on ModelNet40 with only 0.03M additional.
- Abstract(参考訳): ポイントクラウド分類タスクは、モデルの複雑さを維持しながら局所的な幾何学的特徴を効率的に抽出する2つの課題に直面している。
Mambaアーキテクチャは、状態空間モデル(SSM)の線形複雑性の利点を利用して、グローバルモデリング能力のバランスをとりながらトランスフォーマーの計算ボトルネックを克服する。
しかし、一方向依存と点雲の非秩序性との間の固有の矛盾は、局所的近傍における空間的相関のモデル化を妨げ、幾何学的特徴抽出を制約する。
本稿では、幾何学的特徴結合とクロスパス特徴ハイブリッド化により強化された双方向マンバモデルであるHybrid-Emba3Dを提案する。
幾何結合機構を持つ局所幾何プールは、局所的な中心点とその近傍における幾何情報の協調的伝播と動的集約を通じて局所的特徴の識別力を大幅に向上させるが、追加のパラメータは導入しない。
デザインされたコラボレーティブ・フィーチャー・エンハンサーはデュアルパス・ハイブリダイゼーションを採用し、局所的な突然変異やスパースキーシグナルを効果的に処理し、従来のSSM長距離モデリングの限界を突破する。
実験結果から,モデルNet40では新たなSOTA分類精度が95.99%向上し,0.03Mが加わった。
関連論文リスト
- PointLAMA: Latent Attention meets Mamba for Efficient Point Cloud Pretraining [8.906813021681135]
Mambaは最近、ポイントクラウドモデリングのバックボーンモデルとして広く注目を集めており、線形複雑性を伴う効率的なグローバルシーケンスモデリングを可能にするステートスペースアーキテクチャを活用している。
我々は,タスク対応のポイントクラウドシリアライゼーションを組み込んだポイントクラウド事前学習フレームワークであるtextbfPointLAMA,Latent AttentionとMambaブロックを統合したハイブリッドエンコーダ,Mambaバックボーン上に構築された条件拡散機構を提案する。
論文 参考訳(メタデータ) (2025-07-23T07:57:35Z) - On Geometry-Enhanced Parameter-Efficient Fine-Tuning for 3D Scene Segmentation [52.96632954620623]
本稿では3Dポイント・クラウド・トランス用に設計された新しい幾何対応PEFTモジュールを提案する。
当社のアプローチでは,大規模3Dポイントクラウドモデルの効率的,スケーラブル,かつ幾何を考慮した微調整のための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2025-05-28T15:08:36Z) - ZigzagPointMamba: Spatial-Semantic Mamba for Point Cloud Understanding [2.0802801063068403]
PointMambaのような状態空間モデル(SSM)は、ポイントクラウドの自己教師型学習のための効率的な特徴抽出を可能にする。
既存のPointMambaベースの手法は、複雑なトークン順序付けとランダムマスキングに依存している。
これらの課題に対処するためにZigzagPointMambaを提案する。
論文 参考訳(メタデータ) (2025-05-27T16:09:50Z) - PMA: Towards Parameter-Efficient Point Cloud Understanding via Point Mamba Adapter [54.33433051500349]
本稿では,事前学習モデルのすべての層から順序付き特徴系列を構成するPMAを提案する。
また、異なる層にまたがって共有される幾何学制約ゲートプロンプトジェネレータ(G2PG)を提案する。
論文 参考訳(メタデータ) (2025-05-27T09:27:16Z) - KAN or MLP? Point Cloud Shows the Way Forward [13.669234791655075]
我々は、クラウド分析タスクにKAN(Kolmogorov-Arnold Learning Networks)を適用したPointKANを提案する。
我々は、ModelNet40、ScanNN、ShapeNetPartなどのベンチマークデータセットにおいて、PointKANがPointMLPより優れていることを示す。
この研究は、3Dビジョンにおけるkansベースのアーキテクチャの可能性を強調し、ポイントクラウド理解における研究のための新たな道を開く。
論文 参考訳(メタデータ) (2025-04-18T09:52:22Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - PoseMamba: Monocular 3D Human Pose Estimation with Bidirectional Global-Local Spatio-Temporal State Space Model [7.286873011001679]
単眼ビデオにおける複雑な人間のポーズ推定のための線形相関を用いたSSMに基づく純粋手法を提案する。
具体的には、各フレーム内だけでなく、フレーム間の人間の関節関係を包括的にモデル化する、双方向の時間的・時間的ブロックを提案する。
この戦略により、より論理的な幾何学的順序付け戦略が提供され、結果として局所空間スキャンが組み合わせられる。
論文 参考訳(メタデータ) (2024-08-07T04:38:03Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - On-the-fly Point Feature Representation for Point Clouds Analysis [7.074010861305738]
そこで我々は,曲線特徴生成モジュールを通じて,豊富な幾何学的情報を明示的にキャプチャするOn-the-fly Point Feature Representation (OPFR)を提案する。
また、三角形集合に基づく局所座標系を近似した局所参照コンストラクタモジュールを導入する。
OPFRは推論に1.56ms(バニラPFHより65倍速い)と0.012M以上のパラメータしか必要とせず、様々なバックボーン用の汎用的なプラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T04:57:06Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - PointABM:Integrating Bidirectional State Space Model with Multi-Head Self-Attention for Point Cloud Analysis [8.500020888201231]
状態空間モデル(SSM)に基づくMambaは、線形複雑性と分類における大きな成功により、3Dポイントクラウド解析においてその優位性を提供する。
Transformerは、ポイントクラウド分析の最も顕著で成功したアーキテクチャの1つとして登場した。
本稿では,3Dポイントクラウド解析の性能向上のために,ローカル機能を強化するために,MambaアーキテクチャとTransformerアーキテクチャを統合したハイブリッドモデルであるPointABMを提案する。
論文 参考訳(メタデータ) (2024-06-10T07:24:22Z) - CWF: Consolidating Weak Features in High-quality Mesh Simplification [50.634070540791555]
これらの要件をすべて同時に検討するスムーズな機能を提案する。
この官能基は、通常の異方性項と、セトロイド型ボロノイテッセルレーション(CVT)エネルギー項を含む。
論文 参考訳(メタデータ) (2024-04-24T05:37:17Z) - Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model [18.30032389736101]
状態空間モデル(SSM)に基づくMambaモデルは、線形複雑性のみを持つ複数の領域でTransformerより優れている。
我々は,局所的特徴抽出を強化するために,ポイントクラウド学習に適した状態空間モデルであるMamba3Dを提案する。
論文 参考訳(メタデータ) (2024-04-23T12:20:27Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [73.7454734756626]
我々は,マンバをベースとしたポイントクラウド法が,トランスフォーマや多層パーセプトロン(MLP)に基づく従来手法よりも優れていることを示す。
特に,マルチ層パーセプトロン(MLP)を用いて,マンバをベースとした点雲法が従来手法より優れていることを示す。
Point Cloud Mambaは、最先端(SOTA)のポイントベースメソッドであるPointNeXtを超え、ScanNN、ModelNet40、ShapeNetPart、S3DISデータセット上での新たなSOTAパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-01T18:59:03Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
我々は、パッチレベルでポイントクラウドを混合し、混合ポイントクラウドのコンテンツベースターゲットを生成するPointPatchMixを提案する。
パッチスコアリングモジュールは、事前学習した教師モデルから、コンテンツに基づく重要度スコアに基づいて目標を割り当てる。
Point-MAE をベースラインとして,ScanObjectNN では86.3%,ModelNet40 では94.1% の精度で,従来の手法をかなり上回りました。
論文 参考訳(メタデータ) (2023-03-12T14:49:42Z) - Non-linear Independent Dual System (NIDS) for Discretization-independent
Surrogate Modeling over Complex Geometries [0.0]
非線形独立双対系(Non-linear independent dual system、NIDS)は、PDEソリューションの離散化独立で連続的な表現のための深層学習サロゲートモデルである。
NIDSは複雑な可変ジオメトリとメッシュトポロジを持つドメインの予測に使用できる。
テストケースには、複雑な幾何学とデータ不足を伴う車両の問題が含まれており、訓練方法によって実現されている。
論文 参考訳(メタデータ) (2021-09-14T23:38:41Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。