論文の概要: Inferring the Most Similar Variable-length Subsequences between Multidimensional Time Series
- arxiv url: http://arxiv.org/abs/2505.11106v1
- Date: Fri, 16 May 2025 10:39:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:14.68293
- Title: Inferring the Most Similar Variable-length Subsequences between Multidimensional Time Series
- Title(参考訳): 多次元時系列間の最も類似した可変長列の推定
- Authors: Thanadej Rattanakornphan, Piyanon Charoenpoonpanich, Chainarong Amornbunchornvej,
- Abstract要約: 本稿では、時系列間の最も類似した多次元部分列を見つけるための正確な解を提供するアルゴリズムを提案する。
このアルゴリズムは理論上の正確性と効率の保証に基づいて構築される。
実世界のデータセットでは、最も類似したサブシーケンスをさらに高速に抽出した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding the most similar subsequences between two multidimensional time series has many applications: e.g. capturing dependency in stock market or discovering coordinated movement of baboons. Considering one pattern occurring in one time series, we might be wondering whether the same pattern occurs in another time series with some distortion that might have a different length. Nevertheless, to the best of our knowledge, there is no efficient framework that deals with this problem yet. In this work, we propose an algorithm that provides the exact solution of finding the most similar multidimensional subsequences between time series where there is a difference in length both between time series and between subsequences. The algorithm is built based on theoretical guarantee of correctness and efficiency. The result in simulation datasets illustrated that our approach not just only provided correct solution, but it also utilized running time only quarter of time compared against the baseline approaches. In real-world datasets, it extracted the most similar subsequences even faster (up to 20 times faster against baseline methods) and provided insights regarding the situation in stock market and following relations of multidimensional time series of baboon movement. Our approach can be used for any time series. The code and datasets of this work are provided for the public use.
- Abstract(参考訳): 2つの多次元時系列間の最も類似した部分列を見つけるには、例えば、株式市場への依存を捉えたり、バブーンの協調運動を発見するなど、多くの応用がある。
1つの時系列に1つのパターンが存在することを考えると、同じパターンが、異なる長さを持つかもしれない歪みのある別の時系列に起こるのかどうか疑問に思うかもしれない。
しかしながら、私たちの知る限りでは、この問題に対処する効率的なフレームワークはまだありません。
本研究では,時系列とサブシーケンス間の長さの差がある時系列間において,最も類似した多次元サブシーケンスを見つけるための,正確な解を提供するアルゴリズムを提案する。
このアルゴリズムは理論上の正確性と効率の保証に基づいて構築される。
シミュレーションデータセットの結果から,本手法は正しい解を提供するだけでなく,ベースラインアプローチと比較して,実行時間の4分の1しか利用できないことがわかった。
実世界のデータセットでは、最も類似したサブシーケンスをより高速(ベースライン法に比べて最大20倍高速)に抽出し、株式市場の状況やバブーン運動の多次元時系列の関係に関する洞察を提供した。
私たちのアプローチはどんな時系列でも使えます。
この作業のコードとデータセットは、パブリック使用のために提供されている。
関連論文リスト
- Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition [31.096125530322933]
交通やエネルギーといった現実のシナリオでは、値やノイズが欠けている巨大な時系列データが広く観測され、不規則にサンプリングされる。
多くの計算法が提案されているが、そのほとんどは局所的な地平線で動作する。
ほとんど全ての手法は、観測は通常のタイムスタンプでサンプリングされ、複雑な不規則なサンプル時系列を扱うことができないと仮定する。
論文 参考訳(メタデータ) (2023-08-28T21:17:12Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
イベントシーケンスは不均一でスパースであり、従来のモデルは不適当である。
我々は、時間とともに一様でない事象の発生を処理するために設計された効率的な畳み込みニューラルネットワークに基づくCOTICを提案する。
COTICは、次のイベント時間とタイプを予測する際に既存のモデルよりも優れており、最も近いライバルの3.714と比較して平均1.5のランクに達している。
論文 参考訳(メタデータ) (2023-02-13T10:34:51Z) - Uniform Sequence Better: Time Interval Aware Data Augmentation for
Sequential Recommendation [16.00020821220671]
シーケンシャルレコメンデーションは、アイテムのシーケンスに基づいてアクセスする次の項目を予測する重要なタスクである。
既存の作業の多くは、これらの2つの項目間の時間間隔を無視して、前の項目から次の項目への遷移パターンとして、ユーザの好みを学ぶ。
文献では研究されていない時間間隔の観点からシーケンスデータを拡張することを提案する。
論文 参考訳(メタデータ) (2022-12-16T03:13:43Z) - Matrix Profile XXVII: A Novel Distance Measure for Comparing Long Time
Series [18.205595410817327]
本稿では,シリーズにおけるパターン表現比較(Pattern Representation Comparison in Series)の略であるPRCISを紹介する。
PRCISは長い時系列の距離測定であり、辞書で時系列を要約する能力の最近の進歩を生かしている。
論文 参考訳(メタデータ) (2022-12-09T23:02:23Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
時系列解析は、天気予報、異常検出、行動認識などの応用において非常に重要である。
従来の手法では、1D時系列から直接これを達成しようと試みていた。
複雑な経時的変化を、複数の経時的変化と経時的変化に明らかにする。
論文 参考訳(メタデータ) (2022-10-05T12:19:51Z) - Triformer: Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting--Full Version [50.43914511877446]
本稿では,高い効率と精度を確保するために,三角形,可変特性に着目した注意点を提案する。
我々はTriformerが精度と効率の両方で最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-04-28T20:41:49Z) - Elastic Product Quantization for Time Series [19.839572576189187]
本稿では,時間ゆらぎの時間系列の効率的な類似度に基づく比較に製品量子化を用いることを提案する。
提案手法は, 時系列アプリケーションにおける弾性測度を, 高効率(メモリ使用量と時間の両方)で置き換える手法として現れる。
論文 参考訳(メタデータ) (2022-01-04T09:23:06Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。