論文の概要: BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition
- arxiv url: http://arxiv.org/abs/2308.14906v3
- Date: Thu, 30 May 2024 18:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:41:23.188543
- Title: BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition
- Title(参考訳): BayotIDE: 機能分解を伴うBayesian Online Multivariate Time Series Imputation
- Authors: Shikai Fang, Qingsong Wen, Yingtao Luo, Shandian Zhe, Liang Sun,
- Abstract要約: 交通やエネルギーといった現実のシナリオでは、値やノイズが欠けている巨大な時系列データが広く観測され、不規則にサンプリングされる。
多くの計算法が提案されているが、そのほとんどは局所的な地平線で動作する。
ほとんど全ての手法は、観測は通常のタイムスタンプでサンプリングされ、複雑な不規則なサンプル時系列を扱うことができないと仮定する。
- 参考スコア(独自算出の注目度): 31.096125530322933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world scenarios like traffic and energy, massive time-series data with missing values and noises are widely observed, even sampled irregularly. While many imputation methods have been proposed, most of them work with a local horizon, which means models are trained by splitting the long sequence into batches of fit-sized patches. This local horizon can make models ignore global trends or periodic patterns. More importantly, almost all methods assume the observations are sampled at regular time stamps, and fail to handle complex irregular sampled time series arising from different applications. Thirdly, most existing methods are learned in an offline manner. Thus, it is not suitable for many applications with fast-arriving streaming data. To overcome these limitations, we propose BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition. We treat the multivariate time series as the weighted combination of groups of low-rank temporal factors with different patterns. We apply a group of Gaussian Processes (GPs) with different kernels as functional priors to fit the factors. For computational efficiency, we further convert the GPs into a state-space prior by constructing an equivalent stochastic differential equation (SDE), and developing a scalable algorithm for online inference. The proposed method can not only handle imputation over arbitrary time stamps, but also offer uncertainty quantification and interpretability for the downstream application. We evaluate our method on both synthetic and real-world datasets.We release the code at {https://github.com/xuangu-fang/BayOTIDE}
- Abstract(参考訳): 交通やエネルギーといった現実のシナリオでは、値やノイズが欠けている巨大な時系列データが広く観測され、不規則にサンプリングされる。
多くの計算法が提案されているが、そのほとんどは局所的な水平線で動作するため、長いシーケンスを適合サイズのパッチのバッチに分割することでモデルが訓練される。
この局所的な地平線は、モデルにグローバルなトレンドや周期的なパターンを無視させる。
さらに重要なことは、ほとんどの方法では、観測は通常のタイムスタンプでサンプリングされ、異なるアプリケーションから生じる複雑な不規則なサンプル時系列を扱うことができないと仮定している。
第3に、既存のほとんどのメソッドはオフラインで学習される。
したがって、高速なストリーミングデータを持つ多くのアプリケーションには適していない。
これらの制限を克服するために、ベイズオンライン多変量時系列インプチューション(英語版)と機能分解(英語版)を提案する。
多変量時系列を低ランク時間因子群と異なるパターンの重み付けの組み合わせとして扱う。
異なるカーネルを持つガウス過程(GP)の群を関数的事前関数として適用し,その因子に適合する。
計算効率を向上させるため、等価確率微分方程式(SDE)を構築し、オンライン推論のためのスケーラブルなアルゴリズムを開発することにより、GPを状態空間に変換する。
提案手法は任意のタイムスタンプ上での計算だけでなく,下流アプリケーションに対する不確実な定量化と解釈性も提供する。
合成と実世界の両方のデータセットで評価を行い、https://github.com/xuangu-fang/BayOTIDE} でコードを公開します。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Continuous-time Autoencoders for Regular and Irregular Time Series Imputation [21.25279298572273]
時系列計算は、時系列の最も基本的なタスクの1つである。
最近の自己注意に基づく手法は、最先端の計算性能を示している。
連続時間リカレントニューラルネットワークに基づく計算法の設計は,長年にわたって見過ごされてきた。
論文 参考訳(メタデータ) (2023-12-27T14:13:42Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation
for Time Series [49.992908221544624]
時系列データは、しばしば多くの欠落した値を示し、これは時系列計算タスクである。
従来の深層学習法は時系列計算に有効であることが示されている。
本研究では,不確実性のある高精度な計算を行う非生成時系列計算法を提案する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Streaming Factor Trajectory Learning for Temporal Tensor Decomposition [33.18423605559094]
時相テンソル分解のためのストリーム係数軌道学習を提案する。
我々はガウス過程(GP)を用いて因子の軌道をモデル化し、その時間的進化を柔軟に推定する。
合成タスクと実世界のアプリケーションの両方において、SFTLの利点を示してきた。
論文 参考訳(メタデータ) (2023-10-25T21:58:52Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - Continuous-time convolutions model of event sequences [53.36665135225617]
イベントシーケンスデータの巨大なサンプルは、eコマース、ヘルスケア、ファイナンスなど、さまざまなドメインで発生します。
利用可能なデータの量とクライアント毎のイベントシーケンスの長さは典型的には大きいため、長期的なモデリングが必要である。
時間内の事象の一様発生に適した連続畳み込みニューラルネットワークに基づくCOTIC法を提案する。
論文 参考訳(メタデータ) (2023-02-13T10:34:51Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - Fast Variational Learning in State-Space Gaussian Process Models [29.630197272150003]
我々は共役計算変分推論と呼ばれる既存の手法に基づいて構築する。
ジャスト・イン・タイムのコンパイルを利用する効率的なJAX実装を提供しています。
我々の手法は、何百万ものデータポイントを持つ時系列にスケールできる状態空間GPモデルにおいて、高速かつ安定した変分推論をもたらす。
論文 参考訳(メタデータ) (2020-07-09T12:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。