論文の概要: Nash: Neural Adaptive Shrinkage for Structured High-Dimensional Regression
- arxiv url: http://arxiv.org/abs/2505.11143v1
- Date: Fri, 16 May 2025 11:43:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:14.862513
- Title: Nash: Neural Adaptive Shrinkage for Structured High-Dimensional Regression
- Title(参考訳): Nash: 構造化高次元回帰のためのニューラルアダプティブシンチレーション
- Authors: William R. P. Denault,
- Abstract要約: 我々は,ニューラル・アダプティブ・シリンカレーション(Nash)を導入した。ニューラル・アダプティブ・シリンカレーション(Nash)は,ニューラル・ネットワークによるスパース・レグレッション(sparse regression)に,共仕様のサイド情報を統合する統合フレームワークである。
ナッシュは品種ごとの罰則を適応的に調整し、クロスバリデーションなしで正規化を調整する。
実データに関する実験では、Nashが既存のメソッドよりも正確性と適応性を向上できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse linear regression is a fundamental tool in data analysis. However, traditional approaches often fall short when covariates exhibit structure or arise from heterogeneous sources. In biomedical applications, covariates may stem from distinct modalities or be structured according to an underlying graph. We introduce Neural Adaptive Shrinkage (Nash), a unified framework that integrates covariate-specific side information into sparse regression via neural networks. Nash adaptively modulates penalties on a per-covariate basis, learning to tailor regularization without cross-validation. We develop a variational inference algorithm for efficient training and establish connections to empirical Bayes regression. Experiments on real data demonstrate that Nash can improve accuracy and adaptability over existing methods.
- Abstract(参考訳): 疎線形回帰はデータ解析の基本的なツールである。
しかし、共変種が構造を示す場合や異種源から生じる場合、伝統的なアプローチはしばしば不足する。
生体医学の応用において、共変量(covariate)は異なるモダリティに由来するか、基礎となるグラフに従って構造される。
ニューラル適応収縮(Nash)は、共変量固有のサイド情報をニューラルネットワークを介してスパースレグレッションに統合する統合フレームワークである。
ナッシュは品種ごとの罰則を適応的に調整し、クロスバリデーションなしで正規化を調整する。
我々は,効率的なトレーニングのための変分推論アルゴリズムを開発し,経験的ベイズ回帰への接続を確立する。
実データに関する実験では、Nashが既存のメソッドよりも正確性と適応性を向上できることが示されている。
関連論文リスト
- Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
本稿では,学習前のニューラル回帰モデルの最後の層の重みを適応させて,異なる分布から得られる入力データを改善する手法を提案する。
本稿では,この軽量なスペクトル適応手法により,合成および実世界のデータセットの分布外性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-29T04:15:58Z) - Using Linear Regression for Iteratively Training Neural Networks [4.873362301533824]
ニューラルネットワークの重みとバイアスを学習するための単純な線形回帰に基づくアプローチを提案する。
このアプローチは、より大きく、より複雑なアーキテクチャに向けられている。
論文 参考訳(メタデータ) (2023-07-11T11:53:25Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
本稿では,ガウス的特徴を持つ線形回帰モデルの下で,過剰適合型メタラーニングの性能について検討する。
シングルタスク線形回帰には存在しない新しい興味深い性質が見つかる。
本分析は,各訓練課題における基礎的真理のノイズや多様性・変動が大きい場合には,良心過剰がより重要かつ容易に観察できることを示唆する。
論文 参考訳(メタデータ) (2023-04-09T20:36:13Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Semantic Self-adaptation: Enhancing Generalization with a Single Sample [45.111358665370524]
セマンティックセグメンテーションのための自己適応型アプローチを提案する。
整合正則化を用いて畳み込み層のパラメータを入力画像に微調整する。
実験により, 自己適応は訓練時のモデル正規化の確立した実践を補完する可能性が示唆された。
論文 参考訳(メタデータ) (2022-08-10T12:29:01Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。