Modeling Cell Dynamics and Interactions with Unbalanced Mean Field Schrödinger Bridge
- URL: http://arxiv.org/abs/2505.11197v2
- Date: Sun, 01 Jun 2025 10:40:08 GMT
- Title: Modeling Cell Dynamics and Interactions with Unbalanced Mean Field Schrödinger Bridge
- Authors: Zhenyi Zhang, Zihan Wang, Yuhao Sun, Tiejun Li, Peijie Zhou,
- Abstract summary: CytoBridge is a deep learning algorithm designed to approximate the Unbalanced MeanField Schr"odinger Bridge (UMFSB) problem.<n>By explicitly modeling cellular transitions, proliferation, and interactions through neural networks, CytoBridge offers the flexibility to learn these processes directly from data.
- Score: 9.229946487941056
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modeling the dynamics from sparsely time-resolved snapshot data is crucial for understanding complex cellular processes and behavior. Existing methods leverage optimal transport, Schr\"odinger bridge theory, or their variants to simultaneously infer stochastic, unbalanced dynamics from snapshot data. However, these approaches remain limited in their ability to account for cell-cell interactions. This integration is essential in real-world scenarios since intercellular communications are fundamental life processes and can influence cell state-transition dynamics. To address this challenge, we formulate the Unbalanced Mean-Field Schr\"odinger Bridge (UMFSB) framework to model unbalanced stochastic interaction dynamics from snapshot data. Inspired by this framework, we further propose CytoBridge, a deep learning algorithm designed to approximate the UMFSB problem. By explicitly modeling cellular transitions, proliferation, and interactions through neural networks, CytoBridge offers the flexibility to learn these processes directly from data. The effectiveness of our method has been extensively validated using both synthetic gene regulatory data and real scRNA-seq datasets. Compared to existing methods, CytoBridge identifies growth, transition, and interaction patterns, eliminates false transitions, and reconstructs the developmental landscape with greater accuracy.
Related papers
- STAGED: A Multi-Agent Neural Network for Learning Cellular Interaction Dynamics [8.659754814655303]
Single-cell technology has improved our understanding of cellular states and subpopulations in various tissues under normal and diseased conditions.<n>With spatial transcriptomics, we can represent cellular organization, along with dynamic cell-cell interactions that lead to changes in cell state.<n>We introduce Spatio Temporal Agent-Based Graph Evolution Dynamics(STAGED) to model intercellular communication, and its effect on the intracellular gene regulatory network.
arXiv Detail & Related papers (2025-07-15T18:46:07Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - Joint Velocity-Growth Flow Matching for Single-Cell Dynamics Modeling [36.0492773489553]
A destructive measurement technique and cell proliferation/death result in unpaired and unbalanced data between snapshots.<n>We propose Velocity-Growth Flow Matching, a novel paradigm that jointly learns state transition and mass growth of single-cell populations.<n> VGFM builds an ideal single-cell dynamics containing velocity of state and growth of mass, driven by a presented two-period dynamic understanding of the static semi-relaxed optimal transport.
arXiv Detail & Related papers (2025-05-19T17:48:04Z) - Inferring stochastic dynamics with growth from cross-sectional data [3.3748750222488657]
We present a novel approach, emphunbalanced probability flow inference, that addresses the challenge for biological processes modelled as dynamics with growth.<n>By leveraging a Lagrangian formulation of the Fokker-Planck equation, our method accurately disentangles drift from intrinsic noise and growth.
arXiv Detail & Related papers (2025-05-19T14:51:47Z) - Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport [1.6678419461030687]
Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem in both natural sciences and machine learning.<n>Here, we introduce a new deep learning approach for solving regularized unbalanced optimal transport (RUOT) and inferring continuous unbalanced dynamics from observed snapshots.<n>Based on the RUOT form, our method models these dynamics without requiring prior knowledge of growth and death processes or additional information.
arXiv Detail & Related papers (2024-10-01T16:25:03Z) - Multi-Modal and Multi-Attribute Generation of Single Cells with CFGen [76.02070962797794]
This work introduces CellFlow for Generation (CFGen), a flow-based conditional generative model that preserves the inherent discreteness of single-cell data.<n>CFGen generates whole-genome multi-modal single-cell data reliably, improving the recovery of crucial biological data characteristics.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Aligned Diffusion Schrödinger Bridges [41.95944857946607]
Diffusion Schr"odinger bridges (DSBs) have recently emerged as a powerful framework for recovering dynamics via their marginal observations at different time points.
Existing algorithms for solving DSBs have so far failed to utilize the structure of aligned data.
We propose a novel algorithmic framework that, for the first time, solves DSBs while respecting the data alignment.
arXiv Detail & Related papers (2023-02-22T14:55:57Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Inference of cell dynamics on perturbation data using adjoint
sensitivity [4.606583317143614]
Data-driven dynamic models of cell biology can be used to predict cell response to unseen perturbations.
Recent work had demonstrated the derivation of interpretable models with explicit interaction terms.
This work aims to extend the range of applicability of this model inference approach to a diversity of biological systems.
arXiv Detail & Related papers (2021-04-13T19:15:56Z) - TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular
Dynamics [74.43710101147849]
We present TrajectoryNet, which controls the continuous paths taken between distributions to produce dynamic optimal transport.
We show how this is particularly applicable for studying cellular dynamics in data from single-cell RNA sequencing (scRNA-seq) technologies.
arXiv Detail & Related papers (2020-02-09T21:00:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.