論文の概要: Minimizing False-Positive Attributions in Explanations of Non-Linear Models
- arxiv url: http://arxiv.org/abs/2505.11210v1
- Date: Fri, 16 May 2025 13:06:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:15.061114
- Title: Minimizing False-Positive Attributions in Explanations of Non-Linear Models
- Title(参考訳): 非線形モデルの記述における偽陽性属性の最小化
- Authors: Anders Gjølbye, Stefan Haufe, Lars Kai Hansen,
- Abstract要約: Suppressor変数は、対象とする結果に依存することなく、モデル予測に影響を与える可能性がある。
このギャップに対処する新しいXAI技術であるPatternLocalを紹介します。
- 参考スコア(独自算出の注目度): 2.6292731747611575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Suppressor variables can influence model predictions without being dependent on the target outcome and they pose a significant challenge for Explainable AI (XAI) methods. These variables may cause false-positive feature attributions, undermining the utility of explanations. Although effective remedies exist for linear models, their extension to non-linear models and to instance-based explanations has remained limited. We introduce PatternLocal, a novel XAI technique that addresses this gap. PatternLocal begins with a locally linear surrogate, e.g. LIME, KernelSHAP, or gradient-based methods, and transforms the resulting discriminative model weights into a generative representation, thereby suppressing the influence of suppressor variables while preserving local fidelity. In extensive hyperparameter optimization on the XAI-TRIS benchmark, PatternLocal consistently outperformed other XAI methods and reduced false-positive attributions when explaining non-linear tasks, thereby enabling more reliable and actionable insights.
- Abstract(参考訳): Suppressor変数は、対象とする結果に依存することなく、モデル予測に影響を与える可能性がある。
これらの変数は偽陽性の特徴属性を引き起こし、説明の有用性を損なう可能性がある。
線形モデルに対する効果的な改善は存在するが、非線形モデルへの拡張やインスタンスベースの説明は限定的のままである。
このギャップに対処する新しいXAI技術であるPatternLocalを紹介します。
PatternLocalは、局所線形サロゲート、例えばLIME、KernelSHAP、あるいは勾配に基づく手法から始まり、結果として生じる判別モデル重みを生成的表現に変換することにより、局所的忠実性を維持しながら抑制変数の影響を抑える。
XAI-TRISベンチマークの広範なハイパーパラメータ最適化において、PatternLocalは、他のXAIメソッドよりも一貫して優れ、非線形タスクを説明する際の偽陽性属性を低減し、より信頼性が高く行動可能な洞察を可能にした。
関連論文リスト
- Derivative-Free Diffusion Manifold-Constrained Gradient for Unified XAI [59.96044730204345]
微分自由拡散多様体制約勾配(FreeMCG)を導入する。
FreeMCGは、与えられたニューラルネットワークの説明可能性を改善する基盤として機能する。
提案手法は,XAIツールが期待する本質性を保ちながら,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:15:14Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
これらの課題に対処するための影響関数フレームワークを開発する。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - MASALA: Model-Agnostic Surrogate Explanations by Locality Adaptation [3.587367153279351]
既存のローカル説明可能なAI(XAI)メソッドは、与えられた入力インスタンスの近傍にある入力空間の領域を選択し、より単純で解釈可能な代理モデルを用いてモデルの振る舞いを近似する。
そこで本研究では,各インスタンスごとの衝突モデル行動の適切な局所領域を自動決定する手法であるMASALAを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:26:45Z) - Exploring Local Explanations of Nonlinear Models Using Animated Linear
Projections [5.524804393257921]
eXplainable AI(XAI)を使用して、モデルが予測器を使用して予測に到達する方法を示す。
予測器間の相互作用が変数重要度推定にどのように影響するかを理解するために,LVAを線形射影に変換することができる。
このアプローチは、分類学的(ペンギン種、チョコレートタイプ)と定量的(靴と足の給与、住宅価格)の応答モデルから例を示します。
論文 参考訳(メタデータ) (2022-05-11T09:11:02Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
トレーニングデータポイントの不確実性による摂動について考察する。
損失駆動摂動とは異なり、不確実性誘導摂動は決定境界を越えてはならない。
線形モデルにおいて,UDPがロバスト性マージン決定を達成することが保証されていることを示す。
論文 参考訳(メタデータ) (2022-02-11T16:22:08Z) - Disentangling Generative Factors of Physical Fields Using Variational
Autoencoders [0.0]
本研究は,非線形次元低減のための変分オートエンコーダ (VAE) の利用について検討する。
不整合分解は解釈可能であり、生成的モデリングを含む様々なタスクに転送することができる。
論文 参考訳(メタデータ) (2021-09-15T16:02:43Z) - Discrete Denoising Flows [87.44537620217673]
分類的確率変数に対する離散的フローベースモデル(DDF)を提案する。
他の離散フローベースモデルとは対照的に、我々のモデルは勾配バイアスを導入することなく局所的に訓練することができる。
そこで本研究では, DDFs が離散フローより優れていることを示し, 対数類似度で測定した2値MNIST と Cityscapes のセグメンテーションマップをモデル化した。
論文 参考訳(メタデータ) (2021-07-24T14:47:22Z) - Non-intrusive Nonlinear Model Reduction via Machine Learning
Approximations to Low-dimensional Operators [0.0]
本稿では,従来の非侵入的手法を用いて,従来型の侵入的縮小順序モデルを正確に近似する手法を提案する。
この手法は、現代の機械学習回帰手法を用いて、プロジェクションベースのリダクションオーダーモデル(ROM)に関連する低次元演算子を近似する。
非侵襲性を実現することに加えて、このアプローチが計算の複雑さを極端に低くし、最大1000ドル程度の実行時間削減を実現することを実証する。
論文 参考訳(メタデータ) (2021-06-17T17:04:42Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。