論文の概要: Non-intrusive Nonlinear Model Reduction via Machine Learning
Approximations to Low-dimensional Operators
- arxiv url: http://arxiv.org/abs/2106.09658v1
- Date: Thu, 17 Jun 2021 17:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 18:59:19.121748
- Title: Non-intrusive Nonlinear Model Reduction via Machine Learning
Approximations to Low-dimensional Operators
- Title(参考訳): 低次元演算子に対する機械学習近似による非侵入非線形モデル削減
- Authors: Zhe Bai, Liqian Peng
- Abstract要約: 本稿では,従来の非侵入的手法を用いて,従来型の侵入的縮小順序モデルを正確に近似する手法を提案する。
この手法は、現代の機械学習回帰手法を用いて、プロジェクションベースのリダクションオーダーモデル(ROM)に関連する低次元演算子を近似する。
非侵襲性を実現することに加えて、このアプローチが計算の複雑さを極端に低くし、最大1000ドル程度の実行時間削減を実現することを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although projection-based reduced-order models (ROMs) for parameterized
nonlinear dynamical systems have demonstrated exciting results across a range
of applications, their broad adoption has been limited by their intrusivity:
implementing such a reduced-order model typically requires significant
modifications to the underlying simulation code. To address this, we propose a
method that enables traditionally intrusive reduced-order models to be
accurately approximated in a non-intrusive manner. Specifically, the approach
approximates the low-dimensional operators associated with projection-based
reduced-order models (ROMs) using modern machine-learning regression
techniques. The only requirement of the simulation code is the ability to
export the velocity given the state and parameters as this functionality is
used to train the approximated low-dimensional operators. In addition to
enabling nonintrusivity, we demonstrate that the approach also leads to very
low computational complexity, achieving up to $1000\times$ reduction in run
time. We demonstrate the effectiveness of the proposed technique on two types
of PDEs.
- Abstract(参考訳): パラメータ化された非線形力学系のための射影に基づく還元順序モデル(roms)は、様々なアプリケーションでエキサイティングな結果を示しているが、その幅広い採用は、その侵入性によって制限されている。
そこで本研究では, 従来より侵入的であった減数次モデルが, 非侵入的手法で正確に近似できる手法を提案する。
具体的には、最新の機械学習回帰手法を用いて、プロジェクションベースリダクションモデル(ROM)に関連する低次元演算子を近似する。
シミュレーションコードの唯一の要件は、近似された低次元演算子を訓練するためにこの機能を使用するため、状態とパラメータを与えられた速度をエクスポートする能力である。
非インタラクティビティを実現することに加えて、このアプローチが計算の複雑さを極端に低下させ、最大1000\times$で実行時間を削減できることを実証する。
提案手法が2種類のPDEに対して有効であることを示す。
関連論文リスト
- The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical
Systems using Constrained Autoencoders [0.0]
制約付き自己エンコーダニューラルネットワークによって記述された非線形射影のクラスを導入し,データから多様体と射影繊維の両方を学習する。
我々のアーキテクチャでは、エンコーダがデコーダの左逆であることを保証するために、可逆的アクティベーション関数と生物直交重み行列を用いる。
また,高速なダイナミックスと非正規性を考慮した斜め射影ファイバの学習を促進するために,新しいダイナミックス対応コスト関数を導入する。
論文 参考訳(メタデータ) (2023-07-28T04:01:48Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
支配方程式がなければ、パラメトリック還元次代理モデルを非侵襲的に構築する必要がある。
我々の研究は、パラメータのスナップショットを効率的に表示するための非侵入的最適性基準を提供する。
カーネルベースの浅層ニューラルネットワークを用いた能動的学習駆動サロゲートモデルを提案する。
論文 参考訳(メタデータ) (2023-06-09T18:01:14Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Continuous Methods : Adaptively intrusive reduced order model closure [0.0]
時間連続メモリの定式化に基づく新しいROM補正手法を提案する。
提案手法は計算コストを低く抑えながら高い精度を実現する。
論文 参考訳(メタデータ) (2022-11-30T13:55:34Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
非アフィンパラメトリックな依存、非線形性、興味のモデルにおける対流支配的な規則は、ゆっくりとしたコルモゴロフ n-幅の崩壊をもたらす。
我々は,Carlbergらによって導入された非線形多様体法を,オーバーコロケーションの削減とデコーダの教師/学生による学習により実現した。
本研究では,2次元非線形保存法と2次元浅水モデルを用いて方法論を検証し,時間とともに動的に進化する純粋データ駆動型手法と長期記憶ネットワークとの比較を行った。
論文 参考訳(メタデータ) (2022-03-01T11:16:50Z) - Nonlinear proper orthogonal decomposition for convection-dominated flows [0.0]
そこで本稿では,自動エンコーダと長期記憶ネットワークを組み合わせたエンドツーエンドのガレルキンフリーモデルを提案する。
我々の手法は精度を向上するだけでなく、トレーニングやテストの計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2021-10-15T18:05:34Z) - Dynamic Model Pruning with Feedback [64.019079257231]
余分なオーバーヘッドを伴わずにスパーストレーニングモデルを生成する新しいモデル圧縮法を提案する。
CIFAR-10 と ImageNet を用いて本手法の評価を行い,得られたスパースモデルが高密度モデルの最先端性能に到達可能であることを示す。
論文 参考訳(メタデータ) (2020-06-12T15:07:08Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。