Entropy-Driven Genetic Optimization for Deep-Feature-Guided Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2505.11246v1
- Date: Fri, 16 May 2025 13:40:56 GMT
- Title: Entropy-Driven Genetic Optimization for Deep-Feature-Guided Low-Light Image Enhancement
- Authors: Nirjhor Datta, Afroza Akther, M. Sohel Rahman,
- Abstract summary: We propose a novel, unsupervised, fuzzy-inspired image enhancement framework guided by NSGA-II algorithm.<n>We use a GPU-accelerated NSGA-II algorithm that balances multiple objectives, namely, increasing image entropy, improving perceptual similarity, and maintaining appropriate brightness.<n>Our model achieves excellent performance with average BRISQUE and NIQE scores of 19.82 and 3.652, respectively, in all unpaired datasets.
- Score: 1.0428401220897083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image enhancement methods often prioritize pixel level information, overlooking the semantic features. We propose a novel, unsupervised, fuzzy-inspired image enhancement framework guided by NSGA-II algorithm that optimizes image brightness, contrast, and gamma parameters to achieve a balance between visual quality and semantic fidelity. Central to our proposed method is the use of a pre trained deep neural network as a feature extractor. To find the best enhancement settings, we use a GPU-accelerated NSGA-II algorithm that balances multiple objectives, namely, increasing image entropy, improving perceptual similarity, and maintaining appropriate brightness. We further improve the results by applying a local search phase to fine-tune the top candidates from the genetic algorithm. Our approach operates entirely without paired training data making it broadly applicable across domains with limited or noisy labels. Quantitatively, our model achieves excellent performance with average BRISQUE and NIQE scores of 19.82 and 3.652, respectively, in all unpaired datasets. Qualitatively, enhanced images by our model exhibit significantly improved visibility in shadowed regions, natural balance of contrast and also preserve the richer fine detail without introducing noticable artifacts. This work opens new directions for unsupervised image enhancement where semantic consistency is critical.
Related papers
- From Enhancement to Understanding: Build a Generalized Bridge for Low-light Vision via Semantically Consistent Unsupervised Fine-tuning [65.94580484237737]
Low-light enhancement improves image quality for downstream tasks, but existing methods rely on physical or geometric priors.<n>We build a generalized bridge between low-light enhancement and low-light understanding, which we term Generalized Enhancement For Understanding (GEFU)<n>To address the diverse causes of low-light degradation, we leverage pretrained generative diffusion models to optimize images, achieving zero-shot generalization performance.
arXiv Detail & Related papers (2025-07-11T07:51:26Z) - DCEvo: Discriminative Cross-Dimensional Evolutionary Learning for Infrared and Visible Image Fusion [58.36400052566673]
Infrared and visible image fusion integrates information from distinct spectral bands to enhance image quality.<n>Existing approaches treat image fusion and subsequent high-level tasks as separate processes.<n>We propose a Discriminative Cross- Dimension Evolutionary Learning Framework, termed DCEvo, which simultaneously enhances visual quality and perception accuracy.
arXiv Detail & Related papers (2025-03-22T07:01:58Z) - An Improved Optimal Proximal Gradient Algorithm for Non-Blind Image Deblurring [15.645711819668582]
We introduce an improved optimal proximal gradient algorithm (IOptISTA) to efficiently address the non-blind image deblurring problem.<n>The results indicate that our algorithm yields enhanced PSNR and SSIM values, as well as a reduced tolerance, compared to existing methods.
arXiv Detail & Related papers (2025-02-11T14:52:11Z) - GIMS: Image Matching System Based on Adaptive Graph Construction and Graph Neural Network [7.711922592226936]
We introduce an innovative adaptive graph construction method that utilizes a filtering mechanism based on distance and dynamic threshold similarity.<n>We also combine the global awareness capabilities of Transformers to enhance the model's representation of graph structures.<n>Our system achieves an average improvement of 3.8x-40.3x in overall matching performance.
arXiv Detail & Related papers (2024-12-24T07:05:55Z) - Image contrast enhancement based on the Schrödinger operator spectrum [0.276240219662896]
We propose a novel image contrast enhancement method based on projecting images onto the squared eigenfunctions of the two-dimensional Schr"odinger operator.
This projection relies on a design parameter, $gamma$, which controls pixel intensity during image reconstruction.
Results demonstrate that the proposed method effectively enhances image contrast while preserving the inherent characteristics of the original image.
arXiv Detail & Related papers (2024-06-04T12:37:11Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Self-Reference Deep Adaptive Curve Estimation for Low-Light Image
Enhancement [7.253235412867934]
We propose a 2-stage low-light image enhancement method called Self-Reference Deep Adaptive Curve Estimation (Self-DACE)
In the first stage, we present an intuitive, lightweight, fast, and unsupervised luminance enhancement algorithm.
We also propose a new loss function with a simplified physical model designed to preserve natural images' color, structure, and fidelity.
arXiv Detail & Related papers (2023-08-16T07:57:35Z) - LUT-GCE: Lookup Table Global Curve Estimation for Fast Low-light Image
Enhancement [62.17015413594777]
We present an effective and efficient approach for low-light image enhancement, named LUT-GCE.
We estimate a global curve for the entire image that allows corrections for both under- and over-exposure.
Our approach outperforms the state of the art in terms of inference speed, especially on high-definition images (e.g., 1080p and 4k)
arXiv Detail & Related papers (2023-06-12T12:53:06Z) - In-N-Out Generative Learning for Dense Unsupervised Video Segmentation [89.21483504654282]
In this paper, we focus on the unsupervised Video Object (VOS) task which learns visual correspondence from unlabeled videos.
We propose the In-aNd-Out (INO) generative learning from a purely generative perspective, which captures both high-level and fine-grained semantics.
Our INO outperforms previous state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2022-03-29T07:56:21Z) - Image reconstruction algorithms in radio interferometry: from
handcrafted to learned denoisers [7.1439425093981574]
We introduce a new class of iterative image reconstruction algorithms for radio interferometry, inspired by plug-and-play methods.
The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser.
We plug the learned denoiser into the forward-backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step.
arXiv Detail & Related papers (2022-02-25T20:26:33Z) - Low Light Image Enhancement via Global and Local Context Modeling [164.85287246243956]
We introduce a context-aware deep network for low-light image enhancement.
First, it features a global context module that models spatial correlations to find complementary cues over full spatial domain.
Second, it introduces a dense residual block that captures local context with a relatively large receptive field.
arXiv Detail & Related papers (2021-01-04T09:40:54Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.