Sparse Gaussian Process Variational Autoencoders
- URL: http://arxiv.org/abs/2010.10177v2
- Date: Fri, 23 Oct 2020 10:29:06 GMT
- Title: Sparse Gaussian Process Variational Autoencoders
- Authors: Matthew Ashman, Jonathan So, Will Tebbutt, Vincent Fortuin, Michael
Pearce, Richard E. Turner
- Abstract summary: Existing approaches for performing inference in GP-DGMs do not support sparse GP approximations based on points.
We develop the sparse Gaussian processal variation autoencoder (GP-VAE) characterised by the use of partial inference networks for parameterising sparse GP approximations.
- Score: 24.86751422740643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large, multi-dimensional spatio-temporal datasets are omnipresent in modern
science and engineering. An effective framework for handling such data are
Gaussian process deep generative models (GP-DGMs), which employ GP priors over
the latent variables of DGMs. Existing approaches for performing inference in
GP-DGMs do not support sparse GP approximations based on inducing points, which
are essential for the computational efficiency of GPs, nor do they handle
missing data -- a natural occurrence in many spatio-temporal datasets -- in a
principled manner. We address these shortcomings with the development of the
sparse Gaussian process variational autoencoder (SGP-VAE), characterised by the
use of partial inference networks for parameterising sparse GP approximations.
Leveraging the benefits of amortised variational inference, the SGP-VAE enables
inference in multi-output sparse GPs on previously unobserved data with no
additional training. The SGP-VAE is evaluated in a variety of experiments where
it outperforms alternative approaches including multi-output GPs and structured
VAEs.
Related papers
- Domain Invariant Learning for Gaussian Processes and Bayesian
Exploration [39.83530605880014]
We propose a domain invariant learning algorithm for Gaussian processes (DIL-GP) with a min-max optimization on the likelihood.
Numerical experiments demonstrate the superiority of DIL-GP for predictions on several synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-18T16:13:34Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Linear Time GPs for Inferring Latent Trajectories from Neural Spike
Trains [7.936841911281107]
We propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat'ern kernels and conjugate variational inference (CVI)
We are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods.
arXiv Detail & Related papers (2023-06-01T16:31:36Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
We introduce a nonparametric process convolution formulation for GPs that alleviates weaknesses by using a functional sampling approach.
We propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models.
arXiv Detail & Related papers (2022-06-17T19:03:04Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
This paper presents an ensemble of GP models with weights adapted to the labeled data collected incrementally.
Building on this novel EGP model, a suite of acquisition functions emerges based on the uncertainty and disagreement rules.
An adaptively weighted ensemble of EGP-based acquisition functions is also introduced to further robustify performance.
arXiv Detail & Related papers (2022-06-10T11:48:49Z) - Scaling Gaussian Process Optimization by Evaluating a Few Unique
Candidates Multiple Times [119.41129787351092]
We show that sequential black-box optimization based on GPs can be made efficient by sticking to a candidate solution for multiple evaluation steps.
We modify two well-established GP-Opt algorithms, GP-UCB and GP-EI to adapt rules from batched GP-Opt.
arXiv Detail & Related papers (2022-01-30T20:42:14Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Modulating Scalable Gaussian Processes for Expressive Statistical
Learning [25.356503463916816]
Gaussian process (GP) is interested in learning the statistical relationship between inputs and outputs, since it offers not only the prediction mean but also the associated variability.
This article studies new scalable GP paradigms including the non-stationary heteroscedastic GP, the mixture of GPs and the latent GP, which introduce additional latent variables to modulate the outputs or inputs in order to learn richer, non-Gaussian statistical representation.
arXiv Detail & Related papers (2020-08-29T06:41:45Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.