Signal attenuation enables scalable decentralized multi-agent reinforcement learning over networks
- URL: http://arxiv.org/abs/2505.11461v2
- Date: Wed, 28 May 2025 21:19:23 GMT
- Title: Signal attenuation enables scalable decentralized multi-agent reinforcement learning over networks
- Authors: Wesley A Suttle, Vipul K Sharma, Brian M Sadler,
- Abstract summary: Multi-agent reinforcement learning (MARL) methods typically require that agents enjoy global state observability.<n>Recent work has shown that, under assumptions on decaying inter-agent influence, local neighborhood observability can be replaced by local neighborhood observability at each agent.<n>We show that signal attenuation enables decentralization in MARL by considering the illustrative special case of performing power allocation for target detection in a radar network.
- Score: 9.875965151731718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent reinforcement learning (MARL) methods typically require that agents enjoy global state observability, preventing development of decentralized algorithms and limiting scalability. Recent work has shown that, under assumptions on decaying inter-agent influence, global observability can be replaced by local neighborhood observability at each agent, enabling decentralization and scalability. Real-world applications enjoying such decay properties remain underexplored, however, despite the fact that signal power decay, or signal attenuation, due to path loss is an intrinsic feature of many problems in wireless communications and radar networks. In this paper, we show that signal attenuation enables decentralization in MARL by considering the illustrative special case of performing power allocation for target detection in a radar network. To achieve this, we propose two new constrained multi-agent Markov decision process formulations of this power allocation problem, derive local neighborhood approximations for global value function and policy gradient estimates and establish corresponding error bounds, and develop decentralized saddle point policy gradient algorithms for solving the proposed problems. Our approach, though oriented towards the specific radar network problem we consider, provides a useful model for extensions to additional problems in wireless communications and radar networks.
Related papers
- Efficient Beam Selection for ISAC in Cell-Free Massive MIMO via Digital Twin-Assisted Deep Reinforcement Learning [37.540612510652174]
We derive the distribution of joint target detection probabilities across multiple receiving APs under false alarm rate constraints.<n>We then formulate the beam selection procedure as a Markov decision process (MDP)<n>To eliminate the high costs and associated risks of real-time agent-environment interactions, we propose a novel digital twin (DT)-assisted offline DRL approach.
arXiv Detail & Related papers (2025-06-23T12:17:57Z) - Toward Dependency Dynamics in Multi-Agent Reinforcement Learning for Traffic Signal Control [8.312659530314937]
Reinforcement learning (RL) emerges as a promising data-driven approach for adaptive traffic signal control.<n>In this paper, we propose a novel Dynamic Reinforcement Update Strategy for Deep Q-Network (DQN-DPUS)<n>We show that the proposed strategy can speed up the convergence rate without sacrificing optimal exploration.
arXiv Detail & Related papers (2025-02-23T15:29:12Z) - Scalable spectral representations for multi-agent reinforcement learning in network MDPs [13.782868855372774]
A popular model for multi-agent control, Network Markov Decision Processes (MDPs) pose a significant challenge to efficient learning.
We first derive scalable spectral local representations for network MDPs, which induces a network linear subspace for the local $Q$-function of each agent.
We design a scalable algorithmic framework for continuous state-action network MDPs, and provide end-to-end guarantees for the convergence of our algorithm.
arXiv Detail & Related papers (2024-10-22T17:45:45Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.<n>Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Non-Coherent Over-the-Air Decentralized Gradient Descent [0.0]
Implementing Decentralized Gradient Descent in wireless systems is challenging due to noise, fading, and limited bandwidth.
This paper introduces a scalable DGD algorithm that eliminates the need for scheduling, topology information, or CSI.
arXiv Detail & Related papers (2022-11-19T19:15:34Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - Design and Analysis of Robust Resilient Diffusion over Multi-Task
Networks Against Byzantine Attacks [38.740376971569695]
This paper studies distributed diffusion adaptation over clustered multi-task networks in the presence of impulsive interferences and Byzantine attacks.
We develop a robust resilient diffusion least mean Geman-McClure-estimation (RDLMG) algorithm based on the cost function used by the Geman-McClure estimator.
Numerical results evaluate the proposed RDLMG algorithm in applications to multi-target localization and multi-task spectrum sensing.
arXiv Detail & Related papers (2022-06-25T22:58:51Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
We formulate a resilient radio resource management problem with per-user minimum-capacity constraints.
We show that we can parameterize the user selection and power control policies using a finite set of parameters.
Thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate.
arXiv Detail & Related papers (2022-03-07T19:40:39Z) - Cooperative Multi-Agent Reinforcement Learning Based Distributed Dynamic
Spectrum Access in Cognitive Radio Networks [46.723006378363785]
Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization.
In this paper, we investigate the distributed DSA problem for multi-user in a typical cognitive radio network.
We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user.
arXiv Detail & Related papers (2021-06-17T06:52:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.