Exactly solvable dissipative dynamics and one-form strong-to-weak spontaneous symmetry breaking in interacting two-dimensional spin systems
- URL: http://arxiv.org/abs/2505.11501v1
- Date: Fri, 16 May 2025 17:59:59 GMT
- Title: Exactly solvable dissipative dynamics and one-form strong-to-weak spontaneous symmetry breaking in interacting two-dimensional spin systems
- Authors: Lucas Sá, Benjamin Béri,
- Abstract summary: We study the dissipative dynamics of a class of interacting "gamma-matrix" spin models coupled to a Markovian environment.<n>We show that the steady states and relaxation dynamics are qualitatively independent of the choice of the underlying graph.<n>Our work establishes an analytically tractable framework to explore nonequilibrium quantum phases of matter.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dissipative dynamics of a class of interacting "gamma-matrix" spin models coupled to a Markovian environment. For spins on an arbitrary graph, we construct a Lindbladian that maps to a non-Hermitian model of free Majorana fermions hopping on the graph with a background classical $\mathbb{Z}_2$ gauge field. We show, analytically and numerically, that the steady states and relaxation dynamics are qualitatively independent of the choice of the underlying graph, in stark contrast to the Hamiltonian case. We also show that the exponentially many steady states provide a concrete example of mixed-state topological order, in the sense of strong-to-weak spontaneous symmetry breaking of a one-form symmetry. While encoding only classical information, the steady states still exhibit long-range quantum correlations. Afterward, we examine the relaxation processes toward the steady state by numerically computing decay rates, which we generically find to be finite, even in the dissipationless limit. We however identify symmetry sectors where fermion-parity conservation is enhanced to fermion-number conservation, where we can analytically bound the decay rates and prove that they vanish in the limits of both infinitely weak and infinitely strong dissipation. Finally, we show that while the choice of coherent dynamics is very flexible, exact solvability strongly constrains the allowed form of dissipation. Our work establishes an analytically tractable framework to explore nonequilibrium quantum phases of matter and the relaxation mechanisms toward them.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.<n>We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.<n>We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Signatures of a quantum stabilized fluctuating phase and critical
dynamics in a kinetically-constrained open many-body system with two
absorbing states [0.0]
We introduce and investigate an open many-body quantum system in which kinetically coherent and dissipative processes compete.
Our work shows how the interplay between coherent and dissipative processes as well as constraints may lead to a highly intricate non-equilibrium evolution.
arXiv Detail & Related papers (2022-04-22T07:51:38Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Lindbladian dissipation of strongly-correlated quantum matter [0.9290757451344674]
The Sachdev-Ye-Kitaev Lindbladian is a paradigmatic solvable model of dissipative many-body quantum chaos.
Analytical progress is possible by developing a mean-field theory for the Liouvillian time evolution on the Keldysh contour.
arXiv Detail & Related papers (2021-12-22T18:17:52Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Particle mixing and the emergence of classicality: A
spontaneous-collapse-model view [0.0]
We show that spontaneous collapse can induce the decay dynamics in both quantum state and master equations.
We show that the decay property of a flavor-oscillating system is intimately connected to the time (a)symmetry of the noise field underlying the collapse mechanism.
arXiv Detail & Related papers (2020-08-25T16:07:59Z) - Deconstructing effective non-Hermitian dynamics in quadratic bosonic
Hamiltonians [0.0]
We show that stability-to-instability transitions may be classified in terms of a suitably generalized $mathcalPmathcalT$ symmetry.
We characterize the stability phase diagram of a bosonic analogue to the Kitaev-Majorana chain under a wide class of boundary conditions.
Our analysis also reveals that boundary conditions that support Majorana zero modes in the fermionic Kitaev chain are precisely the same that support stability in the bosonic chain.
arXiv Detail & Related papers (2020-03-06T19:30:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.