論文の概要: Cybersecurity threat detection based on a UEBA framework using Deep Autoencoders
- arxiv url: http://arxiv.org/abs/2505.11542v1
- Date: Wed, 14 May 2025 13:18:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.689667
- Title: Cybersecurity threat detection based on a UEBA framework using Deep Autoencoders
- Title(参考訳): ディープオートエンコーダを用いたUEBAフレームワークによるサイバーセキュリティの脅威検出
- Authors: Jose Fuentes, Ines Ortega-Fernandez, Nora M. Villanueva, Marta Sestelo,
- Abstract要約: 本稿では,UEBAに基づく異常検出フレームワークの最初の実装について紹介する。
ニューラルネットワークの理論的基礎に基づいて、完全連結ニューラルネットワークに対する2つの広く使われている定義の等価性を示す新しい証明を提供する。
提案するUEBAフレームワークは,企業環境にシームレスに統合可能であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: User and Entity Behaviour Analytics (UEBA) is a broad branch of data analytics that attempts to build a normal behavioural profile in order to detect anomalous events. Among the techniques used to detect anomalies, Deep Autoencoders constitute one of the most promising deep learning models on UEBA tasks, allowing explainable detection of security incidents that could lead to the leak of personal data, hijacking of systems, or access to sensitive business information. In this study, we introduce the first implementation of an explainable UEBA-based anomaly detection framework that leverages Deep Autoencoders in combination with Doc2Vec to process both numerical and textual features. Additionally, based on the theoretical foundations of neural networks, we offer a novel proof demonstrating the equivalence of two widely used definitions for fully-connected neural networks. The experimental results demonstrate the proposed framework capability to detect real and synthetic anomalies effectively generated from real attack data, showing that the models provide not only correct identification of anomalies but also explainable results that enable the reconstruction of the possible origin of the anomaly. Our findings suggest that the proposed UEBA framework can be seamlessly integrated into enterprise environments, complementing existing security systems for explainable threat detection.
- Abstract(参考訳): User and Entity Behaviour Analytics(UEBA)は、異常なイベントを検出するために正常な振る舞いプロファイルを構築しようとする、データ分析の幅広い分野である。
異常検出に使用されるテクニックの中で、Deep AutoencodersはUEBAタスク上で最も有望なディープラーニングモデルのひとつであり、個人データの漏洩やシステムのハイジャック、機密性の高いビジネス情報へのアクセスにつながる可能性のあるセキュリティインシデントを説明可能な検出を可能にする。
本研究では,Deep AutoencodersとDoc2Vecを組み合わせることで,数値的特徴とテキスト的特徴の両方を処理可能なUEBAベースの異常検出フレームワークの実装について紹介する。
さらに、ニューラルネットワークの理論的基礎に基づき、完全連結ニューラルネットワークに対する2つの広く使われている定義の等価性を示す新しい証明を提供する。
実験により,実際の攻撃データから生成した実および合成異常を効果的に検出する枠組みを実証し,モデルが異常の正確な識別だけでなく,発生源の復元を可能にする説明可能な結果も提供することを示した。
提案するUEBAフレームワークは企業環境へのシームレスな統合が可能であり,既存のセキュリティシステムを補完し,脅威検出を可能にすることが示唆された。
関連論文リスト
- CANTXSec: A Deterministic Intrusion Detection and Prevention System for CAN Bus Monitoring ECU Activations [53.036288487863786]
物理ECUアクティベーションに基づく最初の決定論的侵入検知・防止システムであるCANTXSecを提案する。
CANバスの古典的な攻撃を検知・防止し、文献では調査されていない高度な攻撃を検知する。
物理テストベッド上での解法の有効性を実証し,攻撃の両クラスにおいて100%検出精度を達成し,100%のFIAを防止した。
論文 参考訳(メタデータ) (2025-05-14T13:37:07Z) - Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
論文 参考訳(メタデータ) (2024-09-01T08:53:21Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - Self-Supervised and Interpretable Anomaly Detection using Network
Transformers [1.0705399532413615]
本稿では,異常検出のためのNetwork Transformer(NeT)モデルを提案する。
NeTは、解釈性を改善するために、通信ネットワークのグラフ構造を組み込んでいる。
提案手法は, 産業制御システムにおける異常検出の精度を評価することによって検証された。
論文 参考訳(メタデータ) (2022-02-25T22:05:59Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
我々は、自動話者検証(ASV)のための敵対サンプルを見つけるために、ニューラルボコーダを採用する。
元の音声と再合成音声のASVスコアの違いは、真正と逆正のサンプルの識別に良い指標であることがわかった。
私たちのコードは、将来的な比較作業のためにオープンソースにされます。
論文 参考訳(メタデータ) (2021-07-01T08:58:16Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - DNS Covert Channel Detection via Behavioral Analysis: a Machine Learning
Approach [0.09176056742068815]
本稿では,ネットワーク監視システムから受動的に抽出されたDNSネットワークデータの解析に基づいて,効果的な隠蔽チャネル検出手法を提案する。
提案手法は15日間の実験実験で評価され,最も関連する流出・トンネル攻撃をカバーするトラフィックを注入した。
論文 参考訳(メタデータ) (2020-10-04T13:28:28Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
本稿では,侵入検出問題に適用したニューラルネットワーク手法の実験的検討を行う。
私たちは、ディープベースアプローチやウェイトレスニューラルネットワークを含む、侵入検出に関連する最も顕著なニューラルネットワークベースのテクニックの完全なビューを提供します。
我々の評価は、特に最先端のデータセットを使用してモデルのトレーニングを行う場合、ニューラルネットワークの価値を定量化する。
論文 参考訳(メタデータ) (2020-09-18T18:32:24Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。