TARGET: Benchmarking Table Retrieval for Generative Tasks
- URL: http://arxiv.org/abs/2505.11545v1
- Date: Wed, 14 May 2025 19:39:46 GMT
- Title: TARGET: Benchmarking Table Retrieval for Generative Tasks
- Authors: Xingyu Ji, Parker Glenn, Aditya G. Parameswaran, Madelon Hulsebos,
- Abstract summary: TARGET is a benchmark for evaluating TAble Retrieval for GEnerative Tasks.<n>We analyze the retrieval performance of different retrievers in isolation, as well as their impact on downstream tasks.<n>We find that dense embedding-based retrievers far outperform a BM25 baseline which is less effective than it is for retrieval over unstructured text.
- Score: 7.379012456053551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The data landscape is rich with structured data, often of high value to organizations, driving important applications in data analysis and machine learning. Recent progress in representation learning and generative models for such data has led to the development of natural language interfaces to structured data, including those leveraging text-to-SQL. Contextualizing interactions, either through conversational interfaces or agentic components, in structured data through retrieval-augmented generation can provide substantial benefits in the form of freshness, accuracy, and comprehensiveness of answers. The key question is: how do we retrieve the right table(s) for the analytical query or task at hand? To this end, we introduce TARGET: a benchmark for evaluating TAble Retrieval for GEnerative Tasks. With TARGET we analyze the retrieval performance of different retrievers in isolation, as well as their impact on downstream tasks. We find that dense embedding-based retrievers far outperform a BM25 baseline which is less effective than it is for retrieval over unstructured text. We also surface the sensitivity of retrievers across various metadata (e.g., missing table titles), and demonstrate a stark variation of retrieval performance across datasets and tasks. TARGET is available at https://target-benchmark.github.io.
Related papers
- ELITE: Embedding-Less retrieval with Iterative Text Exploration [5.8851517822935335]
Large Language Models (LLMs) have achieved impressive progress in natural language processing.<n>Their limited ability to retain long-term context constrains performance on document-level or multi-turn tasks.
arXiv Detail & Related papers (2025-05-17T08:48:43Z) - Bridging Queries and Tables through Entities in Table Retrieval [70.13748256886288]
Entities are well-studied in the context of text retrieval, but there is a noticeable lack of research on their applications in table retrieval.<n>We propose an entity-enhanced training framework and design an interaction paradigm based on entity representations.<n>Our proposed framework is plug-and-play and flexible, making it easy to integrate into existing table retriever training processes.
arXiv Detail & Related papers (2025-04-09T03:16:33Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - Generative Retrieval with Preference Optimization for E-commerce Search [16.78829577915103]
We develop an innovative framework for E-commerce search, called generative retrieval with preference optimization.
We employ multi-span identifiers to represent raw item titles and transform the task of generating titles from queries into the task of generating multi-span identifiers from queries.
Our experiments show that this framework achieves competitive performance on a real-world dataset, and online A/B tests demonstrate the superiority and effectiveness in improving conversion gains.
arXiv Detail & Related papers (2024-07-29T09:31:19Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.<n>Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.<n>We show that incorporating explicit reasoning about the query improves retrieval performance by up to 12.2 points.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
We present a novel retrieval framework called Database-Augmented Query representation (DAQu)
DAQu augments the original query with various (query-related) metadata across multiple tables.
We validate DAQu in diverse retrieval scenarios that can incorporate metadata from the relational database.
arXiv Detail & Related papers (2024-06-23T05:02:21Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) is a prevalent approach to infuse a private knowledge base of documents with Large Language Models (LLM) to build Generative Q&A (Question-Answering) systems.
We propose the 'Blended RAG' method of leveraging semantic search techniques, such as Vector indexes and Sparse indexes, blended with hybrid query strategies.
Our study achieves better retrieval results and sets new benchmarks for IR (Information Retrieval) datasets like NQ and TREC-COVID datasets.
arXiv Detail & Related papers (2024-03-22T17:13:46Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
People primarily consult tables to conduct data analysis or answer specific questions.
We define a new query-focused table summarization task, where text generation models have to perform human-like reasoning.
We introduce a new benchmark named QTSumm for this task, which contains 7,111 human-annotated query-summary pairs over 2,934 tables.
arXiv Detail & Related papers (2023-05-23T17:43:51Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
A new design (named Detection Hub) is dataset-aware and category-aligned.
It mitigates the dataset inconsistency and provides coherent guidance for the detector to learn across multiple datasets.
The categories across datasets are semantically aligned into a unified space by replacing one-hot category representations with word embedding.
arXiv Detail & Related papers (2022-06-07T17:59:44Z) - Intermediate Training on Question Answering Datasets Improves Generative
Data Augmentation [32.83012699501051]
We improve generative data augmentation by formulating the data generation as context generation task.
We cast downstream tasks into question answering format and adapt the fine-tuned context generators to the target task domain.
We demonstrate substantial improvements in performance in few-shot, zero-shot settings.
arXiv Detail & Related papers (2022-05-25T09:28:21Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.