Tool-Aided Evolutionary LLM for Generative Policy Toward Efficient Resource Management in Wireless Federated Learning
- URL: http://arxiv.org/abs/2505.11570v1
- Date: Fri, 16 May 2025 10:07:29 GMT
- Title: Tool-Aided Evolutionary LLM for Generative Policy Toward Efficient Resource Management in Wireless Federated Learning
- Authors: Chongyang Tan, Ruoqi Wen, Rongpeng Li, Zhifeng Zhao, Ekram Hossain, Honggang Zhang,
- Abstract summary: Federated Learning (FL) enables distributed model training across edge devices in a privacy-friendly manner.<n>This paper proposes a Tool-aided Evolutionary Large Language Model (T-ELLM) framework to generate a qualified policy for device selection in a wireless FL environment.
- Score: 20.07184763454309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) enables distributed model training across edge devices in a privacy-friendly manner. However, its efficiency heavily depends on effective device selection and high-dimensional resource allocation in dynamic and heterogeneous wireless environments. Conventional methods demand a confluence of domain-specific expertise, extensive hyperparameter tuning, and/or heavy interaction cost. This paper proposes a Tool-aided Evolutionary Large Language Model (T-ELLM) framework to generate a qualified policy for device selection in a wireless FL environment. Unlike conventional optimization methods, T-ELLM leverages natural language-based scenario prompts to enhance generalization across varying network conditions. The framework decouples the joint optimization problem mathematically, enabling tractable learning of device selection policies while delegating resource allocation to convex optimization tools. To improve adaptability, T-ELLM integrates a sample-efficient, model-based virtual learning environment that captures the relationship between device selection and learning performance, facilitating subsequent group relative policy optimization. This concerted approach reduces reliance on real-world interactions, minimizing communication overhead while maintaining high-fidelity decision-making. Theoretical analysis proves that the discrepancy between virtual and real environments is bounded, ensuring the advantage function learned in the virtual environment maintains a provably small deviation from real-world conditions. Experimental results demonstrate that T-ELLM outperforms benchmark methods in energy efficiency and exhibits robust adaptability to environmental changes.
Related papers
- In-Context Learning for Gradient-Free Receiver Adaptation: Principles, Applications, and Theory [54.92893355284945]
Deep learning-based wireless receivers offer the potential to dynamically adapt to varying channel environments.<n>Current adaptation strategies, including joint training, hypernetwork-based methods, and meta-learning, either demonstrate limited flexibility or necessitate explicit optimization through gradient descent.<n>This paper presents gradient-free adaptation techniques rooted in the emerging paradigm of in-context learning (ICL)
arXiv Detail & Related papers (2025-06-18T06:43:55Z) - Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
We present a unified theoretical framework bridgingSupervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training.<n>We propose a simple yet effective learning rate reduction approach that yields significant performance improvements.
arXiv Detail & Related papers (2025-06-15T05:42:29Z) - Adaptive Composition of Machine Learning as a Service (MLaaS) for IoT Environments [0.0]
The dynamic nature of the Internet of Things (IoT) environments challenges the effectiveness of Machine Learning as a Service (ML) compositions.<n>This paper proposes an adaptive ML composition framework to ensure a seamless, efficient, and scalable ML composition.
arXiv Detail & Related papers (2025-05-22T11:31:00Z) - Cluster-Aware Multi-Round Update for Wireless Federated Learning in Heterogeneous Environments [25.405210975577834]
This paper proposes a clustering strategy that leverages prior knowledge similarity to group devices with similar data and communication characteristics.<n>A novel Cluster- Aware Multi-round Update (CAMU) strategy is proposed, which treats clusters as the basic units and adjusts the local update frequency based on the clustered contribution threshold.
arXiv Detail & Related papers (2025-05-06T02:48:48Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - AdaptiveFL: Adaptive Heterogeneous Federated Learning for Resource-Constrained AIoT Systems [25.0282475069725]
Federated Learning (FL) is promising to enable collaborative learning among Artificial Intelligence of Things (AIoT) devices.
This paper introduces an effective FL approach named AdaptiveFL based on a novel fine-grained width-wise model pruning strategy.
We show that AdaptiveFL can achieve up to 16.83% inference improvements for both IID and non-IID scenarios.
arXiv Detail & Related papers (2023-11-22T05:17:42Z) - AQUILA: Communication Efficient Federated Learning with Adaptive
Quantization in Device Selection Strategy [27.443439653087662]
This paper introduces AQUILA (adaptive quantization in device selection strategy), a novel adaptive framework devised to handle these issues.
AQUILA integrates a sophisticated device selection method that prioritizes the quality and usefulness of device updates.
Our experiments demonstrate that AQUILA significantly decreases communication costs compared to existing methods.
arXiv Detail & Related papers (2023-08-01T03:41:47Z) - Cost-Effective Federated Learning in Mobile Edge Networks [37.16466118235272]
Federated learning (FL) is a distributed learning paradigm that enables a large number of mobile devices to collaboratively learn a model without sharing their raw data.
We analyze how to design adaptive FL in mobile edge networks that optimally chooses essential control variables to minimize the total cost.
We develop a low-cost sampling-based algorithm to learn the convergence related unknown parameters.
arXiv Detail & Related papers (2021-09-12T03:02:24Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.