Unveiling the Black Box: A Multi-Layer Framework for Explaining Reinforcement Learning-Based Cyber Agents
- URL: http://arxiv.org/abs/2505.11708v1
- Date: Fri, 16 May 2025 21:29:55 GMT
- Title: Unveiling the Black Box: A Multi-Layer Framework for Explaining Reinforcement Learning-Based Cyber Agents
- Authors: Diksha Goel, Kristen Moore, Jeff Wang, Minjune Kim, Thanh Thi Nguyen,
- Abstract summary: We propose a unified, multi-layer explainability framework for RL-based attacker agents.<n>At the MDP level, we model cyberattacks as a Partially Observable Markov Decision Processes (POMDPs)<n>At the policy level, we analyse the temporal evolution of Q-values and use Prioritised Experience Replay (PER) to surface critical learning transitions.
- Score: 4.239727656979701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) agents are increasingly used to simulate sophisticated cyberattacks, but their decision-making processes remain opaque, hindering trust, debugging, and defensive preparedness. In high-stakes cybersecurity contexts, explainability is essential for understanding how adversarial strategies are formed and evolve over time. In this paper, we propose a unified, multi-layer explainability framework for RL-based attacker agents that reveals both strategic (MDP-level) and tactical (policy-level) reasoning. At the MDP level, we model cyberattacks as a Partially Observable Markov Decision Processes (POMDPs) to expose exploration-exploitation dynamics and phase-aware behavioural shifts. At the policy level, we analyse the temporal evolution of Q-values and use Prioritised Experience Replay (PER) to surface critical learning transitions and evolving action preferences. Evaluated across CyberBattleSim environments of increasing complexity, our framework offers interpretable insights into agent behaviour at scale. Unlike previous explainable RL methods, which are often post-hoc, domain-specific, or limited in depth, our approach is both agent- and environment-agnostic, supporting use cases ranging from red-team simulation to RL policy debugging. By transforming black-box learning into actionable behavioural intelligence, our framework enables both defenders and developers to better anticipate, analyse, and respond to autonomous cyber threats.
Related papers
- A Survey on Autonomy-Induced Security Risks in Large Model-Based Agents [45.53643260046778]
Recent advances in large language models (LLMs) have catalyzed the rise of autonomous AI agents.<n>These large-model agents mark a paradigm shift from static inference systems to interactive, memory-augmented entities.
arXiv Detail & Related papers (2025-06-30T13:34:34Z) - WebCoT: Enhancing Web Agent Reasoning by Reconstructing Chain-of-Thought in Reflection, Branching, and Rollback [74.82886755416949]
We identify key reasoning skills essential for effective web agents.<n>We reconstruct the agent's reasoning algorithms into chain-of-thought rationales.<n>Our approach yields significant improvements across multiple benchmarks.
arXiv Detail & Related papers (2025-05-26T14:03:37Z) - RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning [125.96848846966087]
Training large language models (LLMs) as interactive agents presents unique challenges.<n>While reinforcement learning has enabled progress in static tasks, multi-turn agent RL training remains underexplored.<n>We propose StarPO, a general framework for trajectory-level agent RL, and introduce RAGEN, a modular system for training and evaluating LLM agents.
arXiv Detail & Related papers (2025-04-24T17:57:08Z) - OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities [0.0]
We demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations.<n>We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement.<n>We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats.
arXiv Detail & Related papers (2025-02-18T19:33:14Z) - Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense [7.967738380932909]
We propose a hierarchical Proximal Policy Optimization (PPO) architecture that decomposes the cyber defense task into specific sub-tasks like network investigation and host recovery.
Our approach involves training sub-policies for each sub-task using PPO enhanced with domain expertise.
These sub-policies are then leveraged by a master defense policy that coordinates their selection to solve complex network defense tasks.
arXiv Detail & Related papers (2024-10-22T18:35:05Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression [53.33734159983431]
This paper introduces a novel approach to distill neural RL policies into more interpretable forms.
We train expert neural network policies using RL and distill them into (i) GBMs, (ii) EBMs, and (iii) symbolic policies.
arXiv Detail & Related papers (2024-03-21T11:54:45Z) - Symbiotic Game and Foundation Models for Cyber Deception Operations in Strategic Cyber Warfare [16.378537388284027]
We are currently facing unprecedented cyber warfare with the rapid evolution of tactics, increasing asymmetry of intelligence, and the growing accessibility of hacking tools.
This chapter aims to highlight the pivotal role of game-theoretic models and foundation models (FMs) in analyzing, designing, and implementing cyber deception tactics.
arXiv Detail & Related papers (2024-03-14T20:17:57Z) - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization [53.510942601223626]
Large Language Models (LLMs) exhibit robust problem-solving capabilities for diverse tasks.
These task solvers necessitate manually crafted prompts to inform task rules and regulate behaviors.
We propose Agent-Pro: an LLM-based Agent with Policy-level Reflection and Optimization.
arXiv Detail & Related papers (2024-02-27T15:09:20Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - A Framework for Understanding and Visualizing Strategies of RL Agents [0.0]
We present a framework for learning comprehensible models of sequential decision tasks in which agent strategies are characterized using temporal logic formulas.
We evaluate our framework on combat scenarios in StarCraft II (SC2) using traces from a handcrafted expert policy and a trained reinforcement learning agent.
arXiv Detail & Related papers (2022-08-17T21:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.