Solver-Informed RL: Grounding Large Language Models for Authentic Optimization Modeling
- URL: http://arxiv.org/abs/2505.11792v2
- Date: Wed, 28 May 2025 05:36:33 GMT
- Title: Solver-Informed RL: Grounding Large Language Models for Authentic Optimization Modeling
- Authors: Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, Yinyu Ye,
- Abstract summary: Large Language Models (LLMs) often struggle to generate formally correct and usable models against hallucinations.<n>We present a novel framework that significantly improves the authenticity of LLMs for optimization modeling using Reinforcement Learning with Verifiable Reward.
- Score: 3.253908111652627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization modeling is fundamental to decision-making across diverse domains. Despite progress in automating optimization formulation from natural language descriptions, Large Language Models (LLMs) often struggle to generate formally correct and usable models against hallucinations, posing a challenge for reliable automation. Inspired by the success of Reinforcement Learning (RL) in enhancing Large Reasoning Models, we present Solver-Informed Reinforcement Learning (SIRL), a novel framework that significantly improves the authenticity of LLMs for optimization modeling using Reinforcement Learning with Verifiable Reward by leveraging external optimization solvers as verifiers. These verifiers automatically assess the executable code and the instance-level mathematical model represented by the associated LP file, yielding precise and comprehensive feedback signals -- including syntax, feasibility, and solution quality, serving as direct rewards for the RL process. This automated verification process, particularly from classic optimization solvers, also underpins our instance-enhanced self-consistency method to synthesize high-quality training data. Extensive experiments on diverse public benchmarks demonstrate that SIRL achieves state-of-the-art performance, substantially outperforming existing methods in generating accurate and executable optimization models. Our code is publicly available at https://github.com/Cardinal-Operations/SIRL.
Related papers
- Toward a Trustworthy Optimization Modeling Agent via Verifiable Synthetic Data Generation [11.988926173584154]
We present a framework for training trustworthy large language model (LLM) agents via a synthetic data generation pipeline.<n> OptiTrust is a modular LLM agent that performs multi-language translation from natural language to solver-ready code.<n>Our agent achieves state-of-the-art performance on standard benchmarks.
arXiv Detail & Related papers (2025-08-05T05:54:20Z) - Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach [65.6966065843227]
Iterative Reweight-then-IRO is a framework that performs RL-style alignment of a frozen base model without touching its parameters.<n>At test time, the value functions are used to guide the base model generation via a search-based optimization process.<n> Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT)
arXiv Detail & Related papers (2025-06-21T21:49:02Z) - ToolACE-R: Tool Learning with Adaptive Self-Refinement [84.69651852838794]
Tool learning allows Large Language Models to leverage external tools for solving complex user tasks.<n>We propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations.<n>Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes.
arXiv Detail & Related papers (2025-04-02T06:38:56Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.<n>Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.<n>We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions.
We present a comprehensive framework that includes identifying weak spots in Machine Learning models, selecting suitable augmentations, and devising effective training strategies.
Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets.
arXiv Detail & Related papers (2024-08-30T14:15:48Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.67321902882617]
We propose a viable path for training open-source LLMs capable of optimization modeling and developing solver codes.<n>This work also introduces IndustryOR, the first industrial benchmark for evaluating LLMs in solving practical OR problems.
arXiv Detail & Related papers (2024-05-28T01:55:35Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
We propose a model-agnostic framework for finding sequences of models that are stable across retraining iterations.<n>We develop a mixed-integer optimization formulation that is guaranteed to recover optimal models.<n>We find that, on average, a 2% reduction in predictive power leads to a 30% improvement in stability.
arXiv Detail & Related papers (2024-03-28T22:45:38Z) - PerfRL: A Small Language Model Framework for Efficient Code Optimization [14.18092813639534]
In this paper, we introduce PerfRL, an innovative framework designed to tackle the problem of code optimization.<n>Our framework leverages the capabilities of small language models (SLMs) and reinforcement learning (RL)<n>Our approach achieves similar or better results compared to state-of-the-art models using shorter training times and smaller pre-trained models.
arXiv Detail & Related papers (2023-12-09T19:50:23Z) - CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration [59.48235003469116]
We show that data augmentation consistently enhances OOD performance.
We also show that CF augmented models which are easier to calibrate also exhibit much lower entropy when assigning importance.
arXiv Detail & Related papers (2023-09-14T16:16:40Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.