Q-Policy: Quantum-Enhanced Policy Evaluation for Scalable Reinforcement Learning
- URL: http://arxiv.org/abs/2505.11862v2
- Date: Sat, 07 Jun 2025 04:41:22 GMT
- Title: Q-Policy: Quantum-Enhanced Policy Evaluation for Scalable Reinforcement Learning
- Authors: Kalyan Cherukuri, Aarav Lala, Yash Yardi,
- Abstract summary: We propose a hybrid quantum-classical reinforcement learning framework that mathematically accelerates policy evaluation and optimization.<n>Q-Policy encodes value functions in quantum superposition, enabling simultaneous evaluation of multiple state-action pairs.<n>Our results support the potential of Q-Policy as a theoretical foundation for scalable RL on future quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Q-Policy, a hybrid quantum-classical reinforcement learning (RL) framework that mathematically accelerates policy evaluation and optimization by exploiting quantum computing primitives. Q-Policy encodes value functions in quantum superposition, enabling simultaneous evaluation of multiple state-action pairs via amplitude encoding and quantum parallelism. We introduce a quantum-enhanced policy iteration algorithm with provable polynomial reductions in sample complexity for the evaluation step, under standard assumptions. To demonstrate the technical feasibility and theoretical soundness of our approach, we validate Q-Policy on classical emulations of small discrete control tasks. Due to current hardware and simulation limitations, our experiments focus on showcasing proof-of-concept behavior rather than large-scale empirical evaluation. Our results support the potential of Q-Policy as a theoretical foundation for scalable RL on future quantum devices, addressing RL scalability challenges beyond classical approaches.
Related papers
- First Experience with Real-Time Control Using Simulated VQC-Based Quantum Policies [22.395468970799993]
This paper investigates the integration of quantum computing into offline reinforcement learning.<n>The goal is to evaluate the potential of deploying quantum architectures in real-world industrial control problems.
arXiv Detail & Related papers (2025-08-03T09:50:40Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A quantum information theoretic analysis of reinforcement learning-assisted quantum architecture search [0.0]
This study investigates RL-QAS for crafting ansatz tailored to variational quantum state diagonalisation problem.
We leverage these insights to devise an entanglement-guided admissible ansatz in QAS to diagonalise random quantum states using optimal resources.
arXiv Detail & Related papers (2024-04-09T09:54:59Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum Policy Iteration via Amplitude Estimation and Grover Search --
Towards Quantum Advantage for Reinforcement Learning [7.122914046030916]
We show how to combine amplitude estimation and Grover search into a policy evaluation and improvement scheme.
We derive a quantum policy iteration that repeatedly improves an initial policy using Grover search until the optimum is reached.
arXiv Detail & Related papers (2022-06-09T19:23:10Z) - Quantum Reinforcement Learning via Policy Iteration [6.961253535504979]
We provide a general framework for performing quantum reinforcement learning via policy iteration.
We validate our framework by designing and analyzing: emphquantum policy evaluation methods for infinite horizon discounted problems.
We study the theoretical and experimental performance of our quantum algorithms on two environments from OpenAI's Gym.
arXiv Detail & Related papers (2022-03-03T18:08:17Z) - Uncovering Instabilities in Variational-Quantum Deep Q-Networks [0.0]
We show that variational quantum deep Q-networks (VQ-DQN) are subject to instabilities that cause the learned policy to diverge.
We execute RL algorithms on an actual quantum processing unit (an IBM Quantum Device) and investigate differences in behaviour between simulated and physical quantum systems.
arXiv Detail & Related papers (2022-02-10T17:52:44Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.