論文の概要: Dynamic Perturbed Adaptive Method for Infinite Task-Conflicting Time Series
- arxiv url: http://arxiv.org/abs/2505.11902v1
- Date: Sat, 17 May 2025 08:33:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.928436
- Title: Dynamic Perturbed Adaptive Method for Infinite Task-Conflicting Time Series
- Title(参考訳): 無限タスク競合時系列に対する動的摂動適応法
- Authors: Jiang You, Xiaozhen Wang, Arben Cela,
- Abstract要約: 時系列タスクを、異なる目的の入力出力マッピングとして定式化し、同じ入力が異なる出力を生成する。
そこで本研究では,頻繁なタスクシフトの下で適応性を評価するために,多数の相反するサブタスクを持つ合成データセットを構築した。
本研究では,トランク・ブランチアーキテクチャに基づく動的摂動適応手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formulate time series tasks as input-output mappings under varying objectives, where the same input may yield different outputs. This challenges a model's generalization and adaptability. To study this, we construct a synthetic dataset with numerous conflicting subtasks to evaluate adaptation under frequent task shifts. Existing static models consistently fail in such settings. We propose a dynamic perturbed adaptive method based on a trunk-branch architecture, where the trunk evolves slowly to capture long-term structure, and branch modules are re-initialized and updated for each task. This enables continual test-time adaptation and cross-task transfer without relying on explicit task labels. Theoretically, we show that this architecture has strictly higher functional expressivity than static models and LoRA. We also establish exponential convergence of branch adaptation under the Polyak-Lojasiewicz condition. Experiments demonstrate that our method significantly outperforms competitive baselines in complex and conflicting task environments, exhibiting fast adaptation and progressive learning capabilities.
- Abstract(参考訳): 時系列タスクを、異なる目的の入力出力マッピングとして定式化し、同じ入力が異なる出力を生成する。
これはモデルの一般化と適応性に挑戦する。
そこで本研究では,頻繁なタスクシフトの下で適応性を評価するために,多数の相反するサブタスクを持つ合成データセットを構築した。
既存の静的モデルは、そのような設定で一貫して失敗する。
本研究では,トランク・ブランチアーキテクチャに基づく動的摂動適応手法を提案し,トランクがゆっくりと進化して長期構造を捕捉し,各タスクに対して分岐モジュールの再初期化と更新を行う。
これにより、明示的なタスクラベルに頼ることなく、連続的なテスト時間適応とクロスタスク転送が可能になる。
理論的には、このアーキテクチャは静的モデルやLoRAよりも厳密な関数表現性を持つ。
また、Polyak-Lojasiewicz条件の下で分岐適応の指数収束を確立する。
実験により,本手法は複雑なタスク環境と競合するタスク環境において競争ベースラインを著しく上回り,高速適応と進行学習能力を示すことが示された。
関連論文リスト
- MINGLE: Mixtures of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging [19.916880222546155]
連続モデルマージは、オリジナルのトレーニングデータにアクセスすることなく、個別に微調整されたモデルを逐次統合する。
MINGLEは、少数の未ラベルテストサンプルを使用したテスト時間連続モデルマージのための新しいフレームワークである。
MINGLEは、従来の最先端のメソッドを、さまざまなタスクオーダの平均で7-9%上回っている。
論文 参考訳(メタデータ) (2025-05-17T07:24:22Z) - UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
本稿では,時間的モデリングのためのトランスフォーマーベースの統合フレームワークであるbfUnistageを紹介する。
我々の研究は、タスク固有の視覚テキストが時間学習のための一般化可能なモデルを構築することができることを示した。
また、時間的ダイナミクスを明示的に組み込むための時間的モジュールも導入する。
論文 参考訳(メタデータ) (2025-03-26T17:33:23Z) - Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for Federated Continual Learning [49.508844889242425]
適応型モデル再構成(FedDAH)を用いた動的アロケーション・ハイパーネットワーク(動的アロケーション・ハイパーネットワーク)の医用領域におけるサーバサイドFCLパターンを提案する。
FedDAHは、クライアント間で異なる動的タスクストリームの下での協調学習を容易にするように設計されている。
バイアス最適化のために,従来のモデルの変更候補を現在のサーバ更新に組み込むために,新しい適応モデル再校正(AMR)を導入する。
論文 参考訳(メタデータ) (2025-03-25T00:17:47Z) - Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for FCL [49.508844889242425]
適応型モデル再校正(textbfFedDAH)を用いた動的アロケーション・ハイパーネットワークの医療領域におけるサーバサイドFCLパターンを提案する。
バイアス最適化のために,従来のモデルの変更候補を現在のサーバ更新に組み込むために,新しい適応モデル再校正(AMR)を導入する。
AMOSデータセットの実験では、異なるタスクストリームを持つサイトの他のFCLメソッドよりもFedDAHの方が優れていることが示されています。
論文 参考訳(メタデータ) (2025-03-23T13:12:56Z) - Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning [85.91908329457081]
マルチタスク強化学習は、様々なシナリオにまたがって一般化可能なエージェントを開発することを目的として、様々なタスクを完遂するために単一のポリシーを採用する。
既存のアプローチでは、ルーティングネットワークを使用して各タスクの特定のルートを生成し、モジュールのセットをさまざまなモデルに再構築し、複数のタスクを同時に完了させるのが一般的である。
本稿では,遺伝的アルゴリズム(MEGA)を用いたモデル進化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-19T09:22:34Z) - An Effective-Efficient Approach for Dense Multi-Label Action Detection [23.100602876056165]
i)時間的依存関係と(ii)共起行動関係を同時に学習する必要がある。
近年のアプローチは階層型トランスフォーマーネットワークによるマルチスケール特徴抽出による時間情報のモデル化である。
我々はこれを階層設計における複数のサブサンプリングプロセスと組み合わせることで、位置情報のさらなる喪失につながると論じている。
論文 参考訳(メタデータ) (2024-06-10T11:33:34Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Exposing and Addressing Cross-Task Inconsistency in Unified
Vision-Language Models [80.23791222509644]
一貫性のないAIモデルは、人間のユーザーによって不安定で信頼できないと見なされている。
最先端のビジョン言語モデルは、タスク間の驚くほど高い一貫性のない振る舞いに悩まされている。
本稿では,大規模で自動生成されるクロスタスクコントラスト集合上で計算されたランク相関に基づく補助訓練目標を提案する。
論文 参考訳(メタデータ) (2023-03-28T16:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。