GTR: Gaussian Splatting Tracking and Reconstruction of Unknown Objects Based on Appearance and Geometric Complexity
- URL: http://arxiv.org/abs/2505.11905v1
- Date: Sat, 17 May 2025 08:46:29 GMT
- Title: GTR: Gaussian Splatting Tracking and Reconstruction of Unknown Objects Based on Appearance and Geometric Complexity
- Authors: Takuya Ikeda, Sergey Zakharov, Muhammad Zubair Irshad, Istvan Balazs Opra, Shun Iwase, Dian Chen, Mark Tjersland, Robert Lee, Alexandre Dilly, Rares Ambrus, Koichi Nishiwaki,
- Abstract summary: We present a novel method for 6-DoF object tracking and high-quality 3D reconstruction from monocular RGBD video.<n>Our approach demonstrates strong capabilities in recovering high-fidelity object meshes, setting a new standard for single-sensor 3D reconstruction in open-world environments.
- Score: 49.31257173003408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel method for 6-DoF object tracking and high-quality 3D reconstruction from monocular RGBD video. Existing methods, while achieving impressive results, often struggle with complex objects, particularly those exhibiting symmetry, intricate geometry or complex appearance. To bridge these gaps, we introduce an adaptive method that combines 3D Gaussian Splatting, hybrid geometry/appearance tracking, and key frame selection to achieve robust tracking and accurate reconstructions across a diverse range of objects. Additionally, we present a benchmark covering these challenging object classes, providing high-quality annotations for evaluating both tracking and reconstruction performance. Our approach demonstrates strong capabilities in recovering high-fidelity object meshes, setting a new standard for single-sensor 3D reconstruction in open-world environments.
Related papers
- Mono3R: Exploiting Monocular Cues for Geometric 3D Reconstruction [11.220655907305515]
We introduce a monocular-guided refinement module that integrates monocular geometric priors into multi-view reconstruction frameworks.<n>Our method achieves substantial improvements in both mutli-view camera pose estimation and point cloud accuracy.
arXiv Detail & Related papers (2025-04-18T02:33:12Z) - REArtGS: Reconstructing and Generating Articulated Objects via 3D Gaussian Splatting with Geometric and Motion Constraints [48.80178020541189]
REArtGS is a novel framework that introduces additional geometric and motion constraints to 3D Gaussian primitives.<n>We establish deformable fields for 3D Gaussians constrained by the kinematic structures of articulated objects, achieving unsupervised generation of surface meshes in unseen states.
arXiv Detail & Related papers (2025-03-09T16:05:36Z) - Gaussian Object Carver: Object-Compositional Gaussian Splatting with surfaces completion [16.379647695019308]
3D scene reconstruction is a foundational problem in computer vision.<n>We introduce the Gaussian Object Carver (GOC), a novel, efficient, and scalable framework for object-compositional 3D scene reconstruction.<n>GOC leverage 3D Gaussian Splatting (GS), enriched with monocular geometry priors and multi-view geometry regularization, to achieve high-quality and flexible reconstruction.
arXiv Detail & Related papers (2024-12-03T01:34:39Z) - T-3DGS: Removing Transient Objects for 3D Scene Reconstruction [83.05271859398779]
Transient objects in video sequences can significantly degrade the quality of 3D scene reconstructions.<n>We propose T-3DGS, a novel framework that robustly filters out transient distractors during 3D reconstruction using Gaussian Splatting.
arXiv Detail & Related papers (2024-11-29T07:45:24Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GlossyGS: Inverse Rendering of Glossy Objects with 3D Gaussian Splatting [21.23724172779984]
GlossyGS aims to precisely reconstruct the geometry and materials of glossy objects by integrating material priors.
We demonstrate through quantitative analysis and qualitative visualization that the proposed method is effective to reconstruct high-fidelity geometries and materials of glossy objects.
arXiv Detail & Related papers (2024-10-17T09:00:29Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras [106.52409577316389]
R3D3 is a multi-camera system for dense 3D reconstruction and ego-motion estimation.
Our approach exploits spatial-temporal information from multiple cameras, and monocular depth refinement.
We show that this design enables a dense, consistent 3D reconstruction of challenging, dynamic outdoor environments.
arXiv Detail & Related papers (2023-08-28T17:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.