論文の概要: Joint Manifold Learning and Optimal Transport for Dynamic Imaging
- arxiv url: http://arxiv.org/abs/2505.11913v1
- Date: Sat, 17 May 2025 08:56:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.937381
- Title: Joint Manifold Learning and Optimal Transport for Dynamic Imaging
- Title(参考訳): 動的イメージングのための関節マニフォールド学習と最適輸送
- Authors: Sven Dummer, Puru Vaish, Christoph Brune,
- Abstract要約: 時間進化画像に対するOT正規化器と基礎となる画像多様体の低次元性仮定を統合する効果について検討する。
本稿では, 画像多様体の潜在モデル表現を提案し, この表現, 時系列データ, OT間の整合性を促進する。
- 参考スコア(独自算出の注目度): 1.2016264781280588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic imaging is critical for understanding and visualizing dynamic biological processes in medicine and cell biology. These applications often encounter the challenge of a limited amount of time series data and time points, which hinders learning meaningful patterns. Regularization methods provide valuable prior knowledge to address this challenge, enabling the extraction of relevant information despite the scarcity of time-series data and time points. In particular, low-dimensionality assumptions on the image manifold address sample scarcity, while time progression models, such as optimal transport (OT), provide priors on image development to mitigate the lack of time points. Existing approaches using low-dimensionality assumptions disregard a temporal prior but leverage information from multiple time series. OT-prior methods, however, incorporate the temporal prior but regularize only individual time series, ignoring information from other time series of the same image modality. In this work, we investigate the effect of integrating a low-dimensionality assumption of the underlying image manifold with an OT regularizer for time-evolving images. In particular, we propose a latent model representation of the underlying image manifold and promote consistency between this representation, the time series data, and the OT prior on the time-evolving images. We discuss the advantages of enriching OT interpolations with latent models and integrating OT priors into latent models.
- Abstract(参考訳): ダイナミックイメージングは、医学および細胞生物学における動的な生物学的過程を理解し可視化するために重要である。
これらのアプリケーションは、限られた時系列データと時間ポイントの課題に直面することが多く、意味のあるパターンの学習を妨げる。
正規化手法はこの課題に対処するための貴重な事前知識を提供し、時系列データや時間ポイントの不足にもかかわらず、関連する情報の抽出を可能にする。
特に、画像多様体上の低次元の仮定はサンプルの不足に対処するが、最適輸送(OT)のような時間進行モデルは、画像の発達に先立って時間点の欠如を緩和する。
低次元性の仮定を用いた既存のアプローチは、時間的事前を無視するが、複数の時系列からの情報を活用する。
しかし、OT-prior法は、時間的事前だが、個々の時系列のみを正規化し、同じ画像の他の時系列からの情報を無視する。
本研究では, 時間発展画像に対するOT正規化器と基礎画像多様体の低次元性仮定を統合することの効果について検討する。
特に, 画像多様体の潜在モデル表現を提案し, この表現, 時系列データ, OT間の整合性を促進する。
我々は、潜在モデルとのOT補間を強化し、潜在モデルにOT先行を組み込むことの利点について論じる。
関連論文リスト
- Training-Free Time-Series Anomaly Detection: Leveraging Image Foundation Models [0.0]
画像ベースでトレーニング不要な時系列異常検出(ITF-TAD)手法を提案する。
ITF-TADは、時系列データをウェーブレット変換を用いて画像に変換し、それらを単一の表現に圧縮し、画像基礎モデルを利用して異常検出を行う。
論文 参考訳(メタデータ) (2024-08-27T03:12:08Z) - TimeLDM: Latent Diffusion Model for Unconditional Time Series Generation [2.4454605633840143]
時系列生成は意思決定システムにおいて重要な研究課題である。
最近のアプローチでは、時系列情報をモデル化するために、データ空間での学習に焦点を当てている。
高品質な時系列生成のための新しい遅延拡散モデルであるTimeLDMを提案する。
論文 参考訳(メタデータ) (2024-07-05T01:47:20Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Time Series as Images: Vision Transformer for Irregularly Sampled Time
Series [32.99466250557855]
本稿では,不規則なサンプル時系列を線グラフ画像に変換することによって,新しい視点を提案する。
次に、画像分類と同様に、時系列分類に強力な事前学習型視覚変換器を利用する。
注目すべきは、その単純さにもかかわらず、私たちのアプローチは、いくつかの一般的な医療および人間の活動データセットに関する最先端の特殊アルゴリズムよりも優れていることです。
論文 参考訳(メタデータ) (2023-03-01T22:42:44Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
視覚言語処理における自己教師あり学習は、画像とテキストのモダリティのセマンティックアライメントを利用する。
トレーニングと微調整の両方で利用できる場合、事前のイメージとレポートを明示的に説明します。
我々のアプローチはBioViL-Tと呼ばれ、テキストモデルと共同で訓練されたCNN-Transformerハイブリッドマルチイメージエンコーダを使用する。
論文 参考訳(メタデータ) (2023-01-11T16:35:33Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - On Feature Normalization and Data Augmentation [55.115583969831]
モーメント交換は、認識モデルにもモーメント情報を利用するようモデルに促す。
我々は、あるトレーニングイメージの学習した特徴のモーメントを、別のトレーニングイメージのモーメントに置き換え、ターゲットラベルを補間する。
我々のアプローチは高速で、機能空間で完全に動作し、以前の方法と異なる信号が混在しているため、既存の拡張アプローチと効果的に組み合わせることができる。
論文 参考訳(メタデータ) (2020-02-25T18:59:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。