Parameter Efficient Continual Learning with Dynamic Low-Rank Adaptation
- URL: http://arxiv.org/abs/2505.11998v2
- Date: Tue, 27 May 2025 13:19:59 GMT
- Title: Parameter Efficient Continual Learning with Dynamic Low-Rank Adaptation
- Authors: Prashant Shivaram Bhat, Shakib Yazdani, Elahe Arani, Bahram Zonooz,
- Abstract summary: Catastrophic forgetting has remained a critical challenge for deep neural networks in Continual Learning (CL)<n>We introduce PEARL, a rehearsal-free CL framework that entails dynamic rank allocation for LoRA components during CL training.
- Score: 19.48677836920734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Catastrophic forgetting has remained a critical challenge for deep neural networks in Continual Learning (CL) as it undermines consolidated knowledge when learning new tasks. Parameter efficient fine tuning CL techniques are gaining traction for their effectiveness in addressing catastrophic forgetting with a lightweight training schedule while avoiding degradation of consolidated knowledge in pre-trained models. However, low rank adapters (LoRA) in these approaches are highly sensitive to rank selection which can lead to sub-optimal resource allocation and performance. To this end, we introduce PEARL, a rehearsal-free CL framework that entails dynamic rank allocation for LoRA components during CL training. Specifically, PEARL leverages reference task weights and adaptively determines the rank of task-specific LoRA components based on the current tasks' proximity to reference task weights in parameter space. To demonstrate the versatility of PEARL, we evaluate it across three vision architectures (ResNet, Separable Convolutional Network and Vision Transformer) and a multitude of CL scenarios, and show that PEARL outperforms all considered baselines by a large margin.
Related papers
- CLoRA: Parameter-Efficient Continual Learning with Low-Rank Adaptation [14.2843647693986]
Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning method for class-incremental semantic segmentation.<n>CLoRA significantly reduces the hardware requirements for training, making it well-suited for CL in resource-constrained environments after deployment.
arXiv Detail & Related papers (2025-07-26T09:36:05Z) - TreeLoRA: Efficient Continual Learning via Layer-Wise LoRAs Guided by a Hierarchical Gradient-Similarity Tree [52.44403214958304]
In this paper, we introduce TreeLoRA, a novel approach that constructs layer-wise adapters by leveraging hierarchical gradient similarity.<n>To reduce the computational burden of task similarity estimation, we employ bandit techniques to develop an algorithm based on lower confidence bounds.<n> experiments on both vision transformers (ViTs) and large language models (LLMs) demonstrate the effectiveness and efficiency of our approach.
arXiv Detail & Related papers (2025-06-12T05:25:35Z) - C-LoRA: Continual Low-Rank Adaptation for Pre-trained Models [26.560293264523903]
Low-Rank Adaptation (LoRA) is an efficient fine-tuning method that has been extensively applied in areas such as natural language processing and computer vision.<n>We propose Continual Low-Rank Adaptation (C-LoRA), a novel extension of LoRA for continual learning.<n>C-LoRA uses a learnable routing matrix to dynamically manage parameter updates across tasks.
arXiv Detail & Related papers (2025-02-25T07:35:36Z) - SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising paradigm to exploit abundant knowledge acquired during pre-training for tackling sequential tasks.<n>Existing prompt-based and Low-Rank Adaptation-based (LoRA-based) methods often require expanding a prompt/LoRA pool or retaining samples of previous tasks.<n>We propose Scalable Decoupled LoRA (SD-LoRA) for class incremental learning, which continually separates the learning of the magnitude and direction of LoRA components without rehearsal.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA [19.982853959240497]
We investigate whether pre-trained knowledge in vision-language models (VLMs) can be retained -- or even enhanced -- in continual learning (CL)<n>We propose a universal and efficient Continual Learning approach for VLM based on Dynamic Rank-Selective LoRA (CoDyRA)
arXiv Detail & Related papers (2024-12-01T23:41:42Z) - Dual Low-Rank Adaptation for Continual Learning with Pre-Trained Models [38.97142043836567]
Continual learning (CL) aims to enable vision transformers (ViTs) to learn new tasks over time.<n> catastrophic forgetting remains a persistent challenge.<n>We propose a novel PEFT-CL method called Dual Low-Rank Adaptation (DualLoRA)
arXiv Detail & Related papers (2024-11-01T14:28:39Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Training Neural Networks from Scratch with Parallel Low-Rank Adapters [46.764982726136054]
We introduce LoRA-the-Explorer (LTE), a novel bi-level optimization algorithm designed to enable parallel training of multiple low-rank heads across computing nodes.
Our approach includes extensive experimentation on vision transformers using various vision datasets, demonstrating that LTE is competitive with standard pre-training.
arXiv Detail & Related papers (2024-02-26T18:55:13Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.