Denoising Mutual Knowledge Distillation in Bi-Directional Multiple Instance Learning
- URL: http://arxiv.org/abs/2505.12074v2
- Date: Tue, 27 May 2025 11:14:27 GMT
- Title: Denoising Mutual Knowledge Distillation in Bi-Directional Multiple Instance Learning
- Authors: Chen Shu, Boyu Fu, Yiman Li, Ting Yin, Wenchuan Zhang, Jie Chen, Yuhao Yi, Hong Bu,
- Abstract summary: Multiple Instance Learning is the predominant method for Whole Slide Image classification in digital pathology.<n>We propose to bridge the gap between MIL and fully supervised learning by augmenting both the bag- and instance-level learning processes.<n>The proposed algorithm improves the performance of dual-level MIL algorithms on both bag- and instance-level predictions.
- Score: 4.435658228432678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple Instance Learning is the predominant method for Whole Slide Image classification in digital pathology, enabling the use of slide-level labels to supervise model training. Although MIL eliminates the tedious fine-grained annotation process for supervised learning, whether it can learn accurate bag- and instance-level classifiers remains a question. To address the issue, instance-level classifiers and instance masks were incorporated to ground the prediction on supporting patches. These methods, while practically improving the performance of MIL methods, may potentially introduce noisy labels. We propose to bridge the gap between commonly used MIL and fully supervised learning by augmenting both the bag- and instance-level learning processes with pseudo-label correction capabilities elicited from weak to strong generalization techniques. The proposed algorithm improves the performance of dual-level MIL algorithms on both bag- and instance-level predictions. Experiments on public pathology datasets showcase the advantage of the proposed methods.
Related papers
- Position: From Correlation to Causation: Max-Pooling-Based Multi-Instance Learning Leads to More Robust Whole Slide Image Classification [51.95824566163554]
We argue that well-trained max-pooling-based MIL models can make predictions based on causal factors and avoid relying on spurious correlations.<n>We propose a simple yet effective max-pooling-based MIL method (FocusMIL) that outperforms existing mainstream attention-based methods on two datasets.
arXiv Detail & Related papers (2024-08-18T12:15:22Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.<n>Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.<n>We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Compact and De-biased Negative Instance Embedding for Multi-Instance
Learning on Whole-Slide Image Classification [3.2721526745176144]
We introduce a semi-supervision signal to de-bias the inter-slide variability and to capture the common factors of variation within normal patches.
We evaluate our method on two public WSI datasets including Camelyon-16 and TCGA lung cancer.
arXiv Detail & Related papers (2024-02-16T11:28:50Z) - Rethinking Multiple Instance Learning for Whole Slide Image
Classification: A Bag-Level Classifier is a Good Instance-Level Teacher [22.080213609228547]
Multiple Instance Learning has demonstrated promise in Whole Slide Image (WSI) classification.
Existing methods generally adopt a two-stage approach, comprising a non-learnable feature embedding stage and a classifier training stage.
We propose that a bag-level classifier can be a good instance-level teacher.
arXiv Detail & Related papers (2023-12-02T10:16:03Z) - Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier is All You Need [18.832471712088353]
We propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting.
We also propose an accurate pseudo label generation method through prototype learning.
arXiv Detail & Related papers (2023-07-05T12:44:52Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
We propose an effective framework called textbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL)
MA2CL encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space.
Our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios.
arXiv Detail & Related papers (2023-06-03T05:32:19Z) - Iteratively Coupled Multiple Instance Learning from Instance to Bag
Classifier for Whole Slide Image Classification [21.16848269555692]
Whole Slide Image (WSI) classification remains a challenge due to their extremely high resolution and the absence of fine-grained labels.
We propose a novel framework called Iteratively Coupled MIL (ICMIL) which bridges the loss back-propagation process from the bag-level classifier to the patch embedder.
arXiv Detail & Related papers (2023-03-28T06:12:53Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Feature Re-calibration based MIL for Whole Slide Image Classification [7.92885032436243]
Whole slide image (WSI) classification is a fundamental task for the diagnosis and treatment of diseases.
We propose to re-calibrate the distribution of a WSI bag (instances) by using the statistics of the max-instance (critical) feature.
We employ a position encoding module (PEM) to model spatial/morphological information, and perform pooling by multi-head self-attention (PSMA) with a Transformer encoder.
arXiv Detail & Related papers (2022-06-22T07:00:39Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Dual-stream Maximum Self-attention Multi-instance Learning [11.685285490589981]
Multi-instance learning (MIL) is a form of weakly supervised learning where a single class label is assigned to a bag of instances while the instance-level labels are not available.
We propose a dual-stream maximum self-attention MIL model (DSMIL) parameterized by neural networks.
Our method achieves superior performance compared to the best MIL methods and demonstrates state-of-the-art performance on benchmark MIL datasets.
arXiv Detail & Related papers (2020-06-09T22:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.