論文の概要: Lightweight Spatio-Temporal Attention Network with Graph Embedding and Rotational Position Encoding for Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2505.12136v1
- Date: Sat, 17 May 2025 20:36:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.05863
- Title: Lightweight Spatio-Temporal Attention Network with Graph Embedding and Rotational Position Encoding for Traffic Forecasting
- Title(参考訳): グラフ埋め込みと回転位置符号化による交通予測のための軽量時空間アテンションネットワーク
- Authors: Xiao Wang, Shun-Ren Yang,
- Abstract要約: 交通予測に関する最近の研究は、主にグラフニューラルネットワーク(GNN)と他のモデルを組み合わせることに焦点を当てている。
本稿では,グラフ埋め込みと回転ダイナミクスを用いたSTAN-Temporal Attention Networkと呼ばれる新しいモデルを提案する。
- 参考スコア(独自算出の注目度): 5.87525280573837
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traffic forecasting is a key task in the field of Intelligent Transportation Systems. Recent research on traffic forecasting has mainly focused on combining graph neural networks (GNNs) with other models. However, GNNs only consider short-range spatial information. In this study, we present a novel model termed LSTAN-GERPE (Lightweight Spatio-Temporal Attention Network with Graph Embedding and Rotational Position Encoding). This model leverages both Temporal and Spatial Attention mechanisms to effectively capture long-range traffic dynamics. Additionally, the optimal frequency for rotational position encoding is determined through a grid search approach in both the spatial and temporal attention mechanisms. This systematic optimization enables the model to effectively capture complex traffic patterns. The model also enhances feature representation by incorporating geographical location maps into the spatio-temporal embeddings. Without extensive feature engineering, the proposed method in this paper achieves advanced accuracy on the real-world traffic forecasting datasets PeMS04 and PeMS08.
- Abstract(参考訳): 交通予測はインテリジェントトランスポーテーションシステムにおける重要な課題である。
交通予測に関する最近の研究は、主にグラフニューラルネットワーク(GNN)と他のモデルを組み合わせることに焦点を当てている。
しかし、GNNは短距離空間情報のみを考慮する。
本研究では,LSTAN-GERPE(Graph Embedding and Rotational Position Encoding)と呼ばれる新しいモデルを提案する。
このモデルは、時間的および空間的注意機構を利用して、長距離交通力学を効果的に捉える。
さらに、回転位置符号化のための最適周波数は、空間的および時間的注意機構の両方においてグリッド探索手法により決定される。
この体系的な最適化により、モデルは複雑なトラフィックパターンを効果的にキャプチャできる。
また,空間地図を時空間埋め込みに組み込むことで特徴表現を向上させる。
提案手法は,広範な特徴工学を伴わず,現実の交通予測データセットであるPeMS04とPeMS08の精度向上を実現する。
関連論文リスト
- Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
交通予測はスマートシティの発展において重要な研究分野として浮上している。
最短時間相関のためのネットワークモデリングの最近の進歩は、パフォーマンスのリターンが低下し始めている。
これらの課題に対処するために、時空間グラフ変換器(STGormer)を導入する。
本研究では,その構造に基づく空間符号化手法を2つ設計し,時間位置をバニラ変圧器に統合して時間的トラフィックパターンをキャプチャする。
論文 参考訳(メタデータ) (2024-08-20T13:18:21Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - A Dynamic Temporal Self-attention Graph Convolutional Network for
Traffic Prediction [7.23135508361981]
本稿では,隣接する行列をトレーニング可能なアテンションスコア行列とする時間自己アテンショングラフ畳み込みネットワーク(DT-SGN)モデルを提案する。
実世界の交通データセット上での最先端モデル駆動モデルとデータ駆動モデルよりも,本手法の方が優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2023-02-21T03:51:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow
Forecasting [6.867331860819595]
複雑な時空間相関と非線形トラフィックパターンのため、交通予測は非常に困難である。
既存の研究は主に、空間的相関と時間的相関を別々に考慮して、そのような空間的・時間的依存関係をモデル化する。
本稿では,局所的マルチヘッド自己アテンションを用いた空間時間グラフ上での空間空間的・時間的相関を直接モデル化する。
論文 参考訳(メタデータ) (2022-07-09T19:21:00Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
短期的な交通流予測は知的交通システム(ITS)の重要な分岐であり、交通管理において重要な役割を果たしている。
グラフ畳み込みネットワーク(GCN)は道路網のグラフィカルな構造データを扱うために交通予測モデルで広く利用されている。
この欠点に対処するために、新しい位置グラフ畳み込みネットワーク(Location-GCN)を提案する。
論文 参考訳(メタデータ) (2022-05-10T09:19:12Z) - MAF-GNN: Multi-adaptive Spatiotemporal-flow Graph Neural Network for
Traffic Speed Forecasting [3.614768552081925]
交通速度予測のためのマルチ適応時空間フローグラフニューラルネットワーク(MAF-GNN)を提案する。
MAF-GNNは、トラフィックノード間の複数の遅延空間依存性をキャプチャする、効果的なマルチアダプティブ・アジャシエイト・マトリクス機構を導入している。
パブリックトラフィックネットワークの2つの実世界のデータセットであるMETR-LAとPeMS-Bayでは、他のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-08-08T09:06:43Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。