DNOI-4DRO: Deep 4D Radar Odometry with Differentiable Neural-Optimization Iterations
- URL: http://arxiv.org/abs/2505.12310v1
- Date: Sun, 18 May 2025 08:50:54 GMT
- Title: DNOI-4DRO: Deep 4D Radar Odometry with Differentiable Neural-Optimization Iterations
- Authors: Shouyi Lu, Huanyu Zhou, Guirong Zhuo,
- Abstract summary: A novel learning-optimization-combined 4D radar odometry model, named DNOI-4DRO, is proposed in this paper.<n>The proposed model seamlessly integrates traditional geometric optimization with end-to-end neural network training.<n>Our method even achieves results comparable to A-LOAM with mapping optimization using LiDAR point clouds as input.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel learning-optimization-combined 4D radar odometry model, named DNOI-4DRO, is proposed in this paper. The proposed model seamlessly integrates traditional geometric optimization with end-to-end neural network training, leveraging an innovative differentiable neural-optimization iteration operator. In this framework, point-wise motion flow is first estimated using a neural network, followed by the construction of a cost function based on the relationship between point motion and pose in 3D space. The radar pose is then refined using Gauss-Newton updates. Additionally, we design a dual-stream 4D radar backbone that integrates multi-scale geometric features and clustering-based class-aware features to enhance the representation of sparse 4D radar point clouds. Extensive experiments on the VoD and Snail-Radar datasets demonstrate the superior performance of our model, which outperforms recent classical and learning-based approaches. Notably, our method even achieves results comparable to A-LOAM with mapping optimization using LiDAR point clouds as input. Our models and code will be publicly released.
Related papers
- Geometric Operator Learning with Optimal Transport [77.16909146519227]
We propose integrating optimal transport (OT) into operator learning for partial differential equations (PDEs) on complex geometries.<n>For 3D simulations focused on surfaces, our OT-based neural operator embeds the surface geometry into a 2D parameterized latent space.<n> Experiments with Reynolds-averaged Navier-Stokes equations (RANS) on the ShapeNet-Car and DrivAerNet-Car datasets show that our method achieves better accuracy and also reduces computational expenses.
arXiv Detail & Related papers (2025-07-26T21:28:25Z) - Enhancing Steering Estimation with Semantic-Aware GNNs [41.89219383258699]
hybrid architectures combine 3D neural network models with recurrent neural networks (RNNs) for temporal modeling.<n>We evaluate four hybrid 3D models, all of which outperform the 2D-only baseline.<n>We validate our approach on the KITTI dataset, achieving a 71% improvement over 2D-only models.
arXiv Detail & Related papers (2025-03-21T13:58:08Z) - Enhanced 3D Object Detection via Diverse Feature Representations of 4D Radar Tensor [5.038148262901536]
Raw 4D Radar (4DRT) offers richer spatial and Doppler information than conventional point clouds.<n>We propose a novel 3D object detection framework that maximizes the utility of 4DRT while preserving efficiency.<n>We show that our framework achieves improvements of 7.3% in AP_3D and 9.5% in AP_BEV over the baseline RTNH model when using extremely sparse inputs.
arXiv Detail & Related papers (2025-02-10T02:48:56Z) - Joint Beam Search Integrating CTC, Attention, and Transducer Decoders [53.297697898510194]
We propose a joint modeling scheme where four decoders share the same encoder.<n>The 4D model is trained jointly, which will bring model regularization and maximize the model robustness.<n>In addition, we propose three novel joint beam search algorithms by combining three decoders.
arXiv Detail & Related papers (2024-06-05T05:18:20Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle [9.082693946898733]
We introduce a novel point-based approach for fast dynamic scene reconstruction and real-time rendering from both multi-view and monocular videos.
In contrast to the prevalent NeRF-based approaches hampered by slow training and rendering speeds, our approach harnesses recent advancements in point-based 3D Gaussian Splatting (3DGS)
Our proposed approach showcases a substantial efficiency improvement, achieving a $5times$ faster training speed compared to the per-frame 3DGS modeling.
arXiv Detail & Related papers (2023-12-06T11:25:52Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - 4DRVO-Net: Deep 4D Radar-Visual Odometry Using Multi-Modal and
Multi-Scale Adaptive Fusion [2.911052912709637]
Four-dimensional (4D) radar--visual odometry (4DRVO) integrates complementary information from 4D radar and cameras.
4DRVO may exhibit significant tracking errors owing to sparsity of 4D radar point clouds.
We present 4DRVO-Net, which is a method for 4D radar--visual odometry.
arXiv Detail & Related papers (2023-08-12T14:00:09Z) - TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis [19.322295753674844]
We present a learnable descriptor invariant under 3D rotations and reflections, i.e., the O(3) actions.
We propose an embedding of the 3D spherical neurons into 4D vector neurons, which leverages end-to-end training of the model.
Our results reveal the practical value of steerable 3D spherical neurons for learning in 3D Euclidean space.
arXiv Detail & Related papers (2022-11-26T02:15:35Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
We propose a novel optimization-based paradigm for 3D human model fitting on images and scans.
Our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art.
LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.
arXiv Detail & Related papers (2022-05-12T17:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.