Robust Planning for Autonomous Driving via Mixed Adversarial Diffusion Predictions
- URL: http://arxiv.org/abs/2505.12327v1
- Date: Sun, 18 May 2025 09:44:57 GMT
- Title: Robust Planning for Autonomous Driving via Mixed Adversarial Diffusion Predictions
- Authors: Albert Zhao, Stefano Soatto,
- Abstract summary: We describe a robust planning method for autonomous driving that mixes normal and adversarial agent predictions.<n>We generate a distribution of adversarial predictions by biasing the diffusion model at test time to generate predictions that are likely to collide with a candidate plan.<n>We show the effectiveness of our method on single-agent and multi-agent jaywalking scenarios as well as a red light violation scenario.
- Score: 51.88828388720111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a robust planning method for autonomous driving that mixes normal and adversarial agent predictions output by a diffusion model trained for motion prediction. We first train a diffusion model to learn an unbiased distribution of normal agent behaviors. We then generate a distribution of adversarial predictions by biasing the diffusion model at test time to generate predictions that are likely to collide with a candidate plan. We score plans using expected cost with respect to a mixture distribution of normal and adversarial predictions, leading to a planner that is robust against adversarial behaviors but not overly conservative when agents behave normally. Unlike current approaches, we do not use risk measures that over-weight adversarial behaviors while placing little to no weight on low-cost normal behaviors or use hard safety constraints that may not be appropriate for all driving scenarios. We show the effectiveness of our method on single-agent and multi-agent jaywalking scenarios as well as a red light violation scenario.
Related papers
- From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving [4.795092023802721]
Marginal prediction models commonly forecast each agent's future trajectories independently.<n>Joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions.<n>We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency.
arXiv Detail & Related papers (2025-07-07T17:58:53Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.<n>As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.<n>We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - MAP-Former: Multi-Agent-Pair Gaussian Joint Prediction [6.110153599741102]
There is a gap in risk assessment of trajectories between the trajectory information coming from a traffic motion prediction module and what is actually needed.
Existing prediction models yield joint predictions of agents' future trajectories with uncertainty weights or marginal Gaussian probability density functions (PDFs) for single agents.
This paper introduces a novel approach to motion prediction, focusing on predicting agent-pair covariance matrices in a scene-centric'' manner.
arXiv Detail & Related papers (2024-04-30T06:21:42Z) - Diffusion Models for Multi-target Adversarial Tracking [0.49157446832511503]
Target tracking plays a crucial role in real-world scenarios, particularly in drug-trafficking interdiction.
As unmanned drones proliferate, accurate autonomous target estimation is even more crucial for security and safety.
This paper presents Constrained Agent-based Diffusion for Enhanced Multi-Agent Tracking (CADENCE), an approach aimed at generating comprehensive predictions of adversary locations.
arXiv Detail & Related papers (2023-07-12T15:34:39Z) - Adversarial Resilience in Sequential Prediction via Abstention [46.80218090768711]
We study the problem of sequential prediction in the setting with an adversary that is allowed to inject clean-label adversarial examples.
We propose a new model of sequential prediction that sits between the purely and fully adversarial settings.
arXiv Detail & Related papers (2023-06-22T17:44:22Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty [54.88405167739227]
We present HAICU, a method for heterogeneous-agent trajectory forecasting that explicitly incorporates agents' class probabilities.
We additionally present PUP, a new challenging real-world autonomous driving dataset.
We demonstrate that incorporating class probabilities in trajectory forecasting significantly improves performance in the face of uncertainty.
arXiv Detail & Related papers (2021-04-26T10:28:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.