From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving
- URL: http://arxiv.org/abs/2507.05254v1
- Date: Mon, 07 Jul 2025 17:58:53 GMT
- Title: From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving
- Authors: Fabian Konstantinidis, Ariel Dallari Guerreiro, Raphael Trumpp, Moritz Sackmann, Ulrich Hofmann, Marco Caccamo, Christoph Stiller,
- Abstract summary: Marginal prediction models commonly forecast each agent's future trajectories independently.<n>Joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions.<n>We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency.
- Score: 4.795092023802721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate motion prediction of surrounding traffic participants is crucial for the safe and efficient operation of automated vehicles in dynamic environments. Marginal prediction models commonly forecast each agent's future trajectories independently, often leading to sub-optimal planning decisions for an automated vehicle. In contrast, joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions on a scene level. However, existing approaches differ not only in their problem formulation but also in the model architectures and implementation details used, making it difficult to compare them. In this work, we systematically investigate different approaches to joint motion prediction, including post-processing of the marginal predictions, explicitly training the model for joint predictions, and framing the problem as a generative task. We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency, offering a comprehensive analysis of the strengths and limitations of each approach. Several prediction examples are available at https://frommarginaltojointpred.github.io/.
Related papers
- Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization [4.506411269983418]
Trajectory prediction is an essential step in the pipeline of an autonomous vehicle.<n>Current deep-learning-based trajectory prediction models can achieve excellent accuracy on public datasets.<n>This work fine-tunes trajectory prediction models in multi-agent settings using preference optimization.
arXiv Detail & Related papers (2025-07-03T07:59:49Z) - Certified Human Trajectory Prediction [66.1736456453465]
We propose a certification approach tailored for trajectory prediction that provides guaranteed robustness.<n>To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method.<n>We demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision [2.365702128814616]
Accurate vehicle trajectory prediction is an unsolved problem in autonomous driving.
We propose a middle-ground where multiple trajectory segments are chained together.
Our proposed Multi-Branch Self-Supervised Predictor receives additional training on new predictions starting at intermediate future segments.
arXiv Detail & Related papers (2023-06-06T02:46:28Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - M2I: From Factored Marginal Trajectory Prediction to Interactive
Prediction [26.49897317427192]
Existing models excel at predicting marginal trajectories for single agents, yet it remains an open question to jointly predict scene compliant trajectories over multiple agents.
In this work, we exploit the underlying relations between interacting agents and decouple the joint prediction problem into marginal prediction problems.
Our proposed approach M2I first classifies interacting agents as pairs of influencers and reactors, and then leverages a marginal prediction model and a conditional prediction model to predict trajectories for the influencers and reactors, respectively.
arXiv Detail & Related papers (2022-02-24T03:28:26Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Prediction by Anticipation: An Action-Conditional Prediction Method
based on Interaction Learning [23.321627835039934]
We propose prediction by anticipation, which views interaction in terms of a latent probabilistic generative process.
Under this view, consecutive data frames can be factorized into sequential samples from an action-conditional distribution.
Our proposed prediction model, variational Bayesian in nature, is trained to maximize the evidence lower bound (ELBO) of this conditional distribution.
arXiv Detail & Related papers (2020-12-25T01:39:26Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.