Is Artificial Intelligence Generated Image Detection a Solved Problem?
- URL: http://arxiv.org/abs/2505.12335v1
- Date: Sun, 18 May 2025 10:00:39 GMT
- Title: Is Artificial Intelligence Generated Image Detection a Solved Problem?
- Authors: Ziqiang Li, Jiazhen Yan, Ziwen He, Kai Zeng, Weiwei Jiang, Lizhi Xiong, Zhangjie Fu,
- Abstract summary: AIGIBench is a benchmark designed to rigorously evaluate the robustness and generalization capabilities of state-of-the-art AIGI detectors.<n>It includes 23 diverse fake image subsets that span both advanced and widely adopted image generation techniques.<n>Experiments on 11 advanced detectors demonstrate that, despite their high reported accuracy in controlled settings, these detectors suffer significant performance drops on real-world data.
- Score: 10.839070838139401
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The rapid advancement of generative models, such as GANs and Diffusion models, has enabled the creation of highly realistic synthetic images, raising serious concerns about misinformation, deepfakes, and copyright infringement. Although numerous Artificial Intelligence Generated Image (AIGI) detectors have been proposed, often reporting high accuracy, their effectiveness in real-world scenarios remains questionable. To bridge this gap, we introduce AIGIBench, a comprehensive benchmark designed to rigorously evaluate the robustness and generalization capabilities of state-of-the-art AIGI detectors. AIGIBench simulates real-world challenges through four core tasks: multi-source generalization, robustness to image degradation, sensitivity to data augmentation, and impact of test-time pre-processing. It includes 23 diverse fake image subsets that span both advanced and widely adopted image generation techniques, along with real-world samples collected from social media and AI art platforms. Extensive experiments on 11 advanced detectors demonstrate that, despite their high reported accuracy in controlled settings, these detectors suffer significant performance drops on real-world data, limited benefits from common augmentations, and nuanced effects of pre-processing, highlighting the need for more robust detection strategies. By providing a unified and realistic evaluation framework, AIGIBench offers valuable insights to guide future research toward dependable and generalizable AIGI detection.
Related papers
- Navigating the Challenges of AI-Generated Image Detection in the Wild: What Truly Matters? [9.916527862912941]
We introduce ITW-SM, a new dataset of real and AI-generated images collected from major social media platforms.<n>We identify four key factors that influence AID performance in real-world scenarios.<n>Our modifications result in an average AUC improvement of 26.87% across various AID models under real-world conditions.
arXiv Detail & Related papers (2025-07-14T12:56:55Z) - LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains [6.676901499867856]
Current state-of-the-art AIGI detection methods rely on large, deep neural architectures.<n>We introduce LAID, the first framework that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks.<n>Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions.
arXiv Detail & Related papers (2025-07-07T16:18:19Z) - Quality Assessment and Distortion-aware Saliency Prediction for AI-Generated Omnidirectional Images [70.49595920462579]
This work studies the quality assessment and distortion-aware saliency prediction problems for AIGODIs.<n>We propose two models with shared encoders based on the BLIP-2 model to evaluate the human visual experience and predict distortion-aware saliency for AI-generated omnidirectional images.
arXiv Detail & Related papers (2025-06-27T05:36:04Z) - RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors [57.81012948133832]
We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples.<n>Our methodology generates adversarial images that transfer with a high success rate to unseen detectors.<n>Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples.
arXiv Detail & Related papers (2025-06-04T14:16:00Z) - AI-GenBench: A New Ongoing Benchmark for AI-Generated Image Detection [9.540547388707987]
Ai-GenBench is a novel benchmark designed to address the need for robust detection of AI-generated images in real-world scenarios.<n>By establishing clear evaluation rules and controlled augmentation strategies, Ai-GenBench enables meaningful comparison of detection methods and scalable solutions.
arXiv Detail & Related papers (2025-04-29T15:41:13Z) - FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
We propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics.<n>FakeScope identifies AI-synthetic images with high accuracy and provides rich, interpretable, and query-driven forensic insights.<n>FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios.
arXiv Detail & Related papers (2025-03-31T16:12:48Z) - CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI [58.35348718345307]
Current efforts to distinguish between real and AI-generated images may lack generalization.<n>We propose a novel framework, Co-Spy, that first enhances existing semantic features.<n>We also create Co-Spy-Bench, a comprehensive dataset comprising 5 real image datasets and 22 state-of-the-art generative models.
arXiv Detail & Related papers (2025-03-24T01:59:29Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - Present and Future Generalization of Synthetic Image Detectors [0.6144680854063939]
This work conducts a systematic analysis and uses its insights to develop practical guidelines for training robust synthetic image detectors.
Model generalization capabilities are evaluated across different setups including real-world deployment conditions.
We show that while current approaches excel in specific scenarios, no single detector achieves universal effectiveness.
arXiv Detail & Related papers (2024-09-21T12:46:17Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.