CAPTURE: Context-Aware Prompt Injection Testing and Robustness Enhancement
- URL: http://arxiv.org/abs/2505.12368v2
- Date: Tue, 17 Jun 2025 05:38:20 GMT
- Title: CAPTURE: Context-Aware Prompt Injection Testing and Robustness Enhancement
- Authors: Gauri Kholkar, Ratinder Ahuja,
- Abstract summary: We introduce CAPTURE, a novel context-aware benchmark assessing both attack detection and over-defense tendencies.<n>Our experiments reveal that current prompt injection guardrail models suffer from high false negatives in adversarial cases and excessive false positives in benign scenarios.<n>This new model drastically reduces both false negative and false positive rates on our context-aware datasets.
- Score: 0.34530027457862006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt injection remains a major security risk for large language models. However, the efficacy of existing guardrail models in context-aware settings remains underexplored, as they often rely on static attack benchmarks. Additionally, they have over-defense tendencies. We introduce CAPTURE, a novel context-aware benchmark assessing both attack detection and over-defense tendencies with minimal in-domain examples. Our experiments reveal that current prompt injection guardrail models suffer from high false negatives in adversarial cases and excessive false positives in benign scenarios, highlighting critical limitations. To demonstrate our framework's utility, we train CaptureGuard on our generated data. This new model drastically reduces both false negative and false positive rates on our context-aware datasets while also generalizing effectively to external benchmarks, establishing a path toward more robust and practical prompt injection defenses.
Related papers
- Benchmarking Misuse Mitigation Against Covert Adversaries [80.74502950627736]
Existing language model safety evaluations focus on overt attacks and low-stakes tasks.<n>We develop Benchmarks for Stateful Defenses (BSD), a data generation pipeline that automates evaluations of covert attacks and corresponding defenses.<n>Our evaluations indicate that decomposition attacks are effective misuse enablers, and highlight stateful defenses as a countermeasure.
arXiv Detail & Related papers (2025-06-06T17:33:33Z) - MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models [56.09354775405601]
Model extraction attacks aim to replicate the functionality of a black-box model through query access.<n>Most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs.<n>We propose MISLEADER, a novel defense strategy that does not rely on OOD assumptions.
arXiv Detail & Related papers (2025-06-03T01:37:09Z) - OET: Optimization-based prompt injection Evaluation Toolkit [25.148709805243836]
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation.<n>Their susceptibility to prompt injection attacks poses significant security risks.<n>Despite numerous defense strategies, a standardized framework to rigorously evaluate their effectiveness is lacking.
arXiv Detail & Related papers (2025-05-01T20:09:48Z) - R-TPT: Improving Adversarial Robustness of Vision-Language Models through Test-Time Prompt Tuning [97.49610356913874]
We propose a robust test-time prompt tuning (R-TPT) for vision-language models (VLMs)<n>R-TPT mitigates the impact of adversarial attacks during the inference stage.<n>We introduce a plug-and-play reliability-based weighted ensembling strategy to strengthen the defense.
arXiv Detail & Related papers (2025-04-15T13:49:31Z) - SPIN: Self-Supervised Prompt INjection [16.253558670549697]
adversarial and jailbreak attacks have been proposed to bypass the safety alignment and cause the model to produce harmful responses.
We introduce Self-supervised Prompt INjection (SPIN) which can detect and reverse these various attacks on LLMs.
Our system can reduce the attack success rate by up to 87.9%, while maintaining the performance on benign user requests.
arXiv Detail & Related papers (2024-10-17T05:40:54Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Constrained Adaptive Attacks: Realistic Evaluation of Adversarial
Examples and Robust Training of Deep Neural Networks for Tabular Data [19.579837693614326]
We propose CAA, the first efficient evasion attack for constrained deep learning models.
We leverage CAA to build a benchmark of deep tabular models across three popular use cases: credit scoring, phishing and botnet attacks detection.
arXiv Detail & Related papers (2023-11-08T07:35:28Z) - Robust Safety Classifier for Large Language Models: Adversarial Prompt
Shield [7.5520641322945785]
Large Language Models' safety remains a critical concern due to their vulnerability to adversarial attacks.
We introduce the Adversarial Prompt Shield (APS), a lightweight model that excels in detection accuracy and demonstrates resilience against adversarial prompts.
We also propose novel strategies for autonomously generating adversarial training datasets.
arXiv Detail & Related papers (2023-10-31T22:22:10Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - "That Is a Suspicious Reaction!": Interpreting Logits Variation to
Detect NLP Adversarial Attacks [0.2999888908665659]
Adversarial attacks are a major challenge faced by current machine learning research.
Our work presents a model-agnostic detector of adversarial text examples.
arXiv Detail & Related papers (2022-04-10T09:24:41Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
We show that existing novelty detectors are susceptible to adversarial examples.
We propose a defense strategy that manipulates the latent space of novelty detectors to improve the robustness against adversarial examples.
arXiv Detail & Related papers (2021-08-25T10:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.