Balancing Fairness and Robustness via Partial Invariance
- URL: http://arxiv.org/abs/2112.09346v1
- Date: Fri, 17 Dec 2021 06:41:47 GMT
- Title: Balancing Fairness and Robustness via Partial Invariance
- Authors: Moulik Choraria, Ibtihal Ferwana, Ankur Mani, Lav R. Varshney
- Abstract summary: Invariant Risk Minimization (IRM) aims to learn invariant features from a set of environments for solving the out-of-distribution (OOD) problem.
We argue for a partial invariance framework to mitigate the failure case.
Our results show the capability of the partial invariant risk minimization to alleviate the trade-off between fairness and risk in certain settings.
- Score: 17.291131923335918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Invariant Risk Minimization (IRM) framework aims to learn invariant
features from a set of environments for solving the out-of-distribution (OOD)
generalization problem. The underlying assumption is that the causal components
of the data generating distributions remain constant across the environments or
alternately, the data "overlaps" across environments to find meaningful
invariant features. Consequently, when the "overlap" assumption does not hold,
the set of truly invariant features may not be sufficient for optimal
prediction performance. Such cases arise naturally in networked settings and
hierarchical data-generating models, wherein the IRM performance becomes
suboptimal. To mitigate this failure case, we argue for a partial invariance
framework. The key idea is to introduce flexibility into the IRM framework by
partitioning the environments based on hierarchical differences, while
enforcing invariance locally within the partitions. We motivate this framework
in classification settings with causal distribution shifts across environments.
Our results show the capability of the partial invariant risk minimization to
alleviate the trade-off between fairness and risk in certain settings.
Related papers
- Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal
Approach [51.012396632595554]
Invariant representation learning (IRL) encourages the prediction from invariant causal features to labels de-confounded from the environments.
Recent theoretical results verified that some causal features recovered by IRLs merely pretend domain-invariantly in the training environments but fail in unseen domains.
We develop an approach based on conditional mutual information with respect to RS-SCM, then rigorously rectify the spurious and fake invariant effects.
arXiv Detail & Related papers (2023-12-15T12:58:05Z) - Winning Prize Comes from Losing Tickets: Improve Invariant Learning by
Exploring Variant Parameters for Out-of-Distribution Generalization [76.27711056914168]
Out-of-Distribution (OOD) Generalization aims to learn robust models that generalize well to various environments without fitting to distribution-specific features.
Recent studies based on Lottery Ticket Hypothesis (LTH) address this problem by minimizing the learning target to find some of the parameters that are critical to the task.
We propose Exploring Variant parameters for Invariant Learning (EVIL) which also leverages the distribution knowledge to find the parameters that are sensitive to distribution shift.
arXiv Detail & Related papers (2023-10-25T06:10:57Z) - Mitigating Group Bias in Federated Learning for Heterogeneous Devices [1.181206257787103]
Federated Learning is emerging as a privacy-preserving model training approach in distributed edge applications.
Our work proposes a group-fair FL framework that minimizes group-bias while preserving privacy and without resource utilization overhead.
arXiv Detail & Related papers (2023-09-13T16:53:48Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Learning Optimal Features via Partial Invariance [18.552839725370383]
Invariant Risk Minimization (IRM) is a popular framework that aims to learn robust models from multiple environments.
We show that IRM can over-constrain the predictor and to remedy this, we propose a relaxation via $textitpartial invariance$.
Several experiments, conducted both in linear settings as well as with deep neural networks on tasks over both language and image data, allow us to verify our conclusions.
arXiv Detail & Related papers (2023-01-28T02:48:14Z) - ZIN: When and How to Learn Invariance by Environment Inference? [24.191152823045385]
Invariant learning methods have proposed to learn robust and invariant models based on environment partition.
We show that learning invariant features under this circumstance is fundamentally impossible without further inductive biases or additional information.
We propose a framework to jointly learn environment partition and invariant representation, assisted by additional auxiliary information.
arXiv Detail & Related papers (2022-03-11T10:00:33Z) - Heterogeneous Risk Minimization [25.5458915855661]
Invariant learning methods for out-of-distribution generalization have been proposed by leveraging multiple training environments to find invariant relationships.
Modern datasets are assembled by merging data from multiple sources without explicit source labels.
We propose Heterogeneous Risk Minimization (HRM) framework to achieve joint learning of latent heterogeneity among the data and invariant relationship.
arXiv Detail & Related papers (2021-05-09T02:51:36Z) - Robust Reconfigurable Intelligent Surfaces via Invariant Risk and Causal
Representations [55.50218493466906]
In this paper, the problem of robust reconfigurable intelligent surface (RIS) system design under changes in data distributions is investigated.
Using the notion of invariant risk minimization (IRM), an invariant causal representation across multiple environments is used such that the predictor is simultaneously optimal for each environment.
A neural network-based solution is adopted to seek the predictor and its performance is validated via simulations against an empirical risk minimization-based design.
arXiv Detail & Related papers (2021-05-04T21:36:31Z) - Environment Inference for Invariant Learning [9.63004099102596]
We propose EIIL, a framework for domain-invariant learning that incorporates Environment Inference.
We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels.
We also establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
arXiv Detail & Related papers (2020-10-14T17:11:46Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
Invariant Risk Minimization is an objective based on the idea for learning deep, invariant features of data.
We present the first analysis of classification under the IRM objective--as well as these recently proposed alternatives--under a fairly natural and general model.
We show that IRM can fail catastrophically unless the test data are sufficiently similar to the training distribution--this is precisely the issue that it was intended to solve.
arXiv Detail & Related papers (2020-10-12T14:54:32Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.