論文の概要: Towards Reliable and Interpretable Traffic Crash Pattern Prediction and Safety Interventions Using Customized Large Language Models
- arxiv url: http://arxiv.org/abs/2505.12545v2
- Date: Wed, 21 May 2025 17:38:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 13:19:52.32835
- Title: Towards Reliable and Interpretable Traffic Crash Pattern Prediction and Safety Interventions Using Customized Large Language Models
- Title(参考訳): カスタマイズされた大規模言語モデルを用いた信頼性・解釈可能な交通事故パターン予測と安全対策
- Authors: Yang Zhao, Pu Wang, Yibo Zhao, Hongru Du, Hao Frank Yang,
- Abstract要約: TrafficSafeは、テキストレベルの推論として、再フレームのクラッシュ予測と機能属性に適応するフレームワークである。
飲酒運転が深刻な事故の要因となっている。
TrafficSafeは、戦略的クラッシュデータ収集の改善を導くモデルトレーニングにおいて、重要な機能を強調している。
- 参考スコア(独自算出の注目度): 14.53510262691888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting crash events is crucial for understanding crash distributions and their contributing factors, thereby enabling the design of proactive traffic safety policy interventions. However, existing methods struggle to interpret the complex interplay among various sources of traffic crash data, including numeric characteristics, textual reports, crash imagery, environmental conditions, and driver behavior records. As a result, they often fail to capture the rich semantic information and intricate interrelationships embedded in these diverse data sources, limiting their ability to identify critical crash risk factors. In this research, we propose TrafficSafe, a framework that adapts LLMs to reframe crash prediction and feature attribution as text-based reasoning. A multi-modal crash dataset including 58,903 real-world reports together with belonged infrastructure, environmental, driver, and vehicle information is collected and textualized into TrafficSafe Event Dataset. By customizing and fine-tuning LLMs on this dataset, the TrafficSafe LLM achieves a 42% average improvement in F1-score over baselines. To interpret these predictions and uncover contributing factors, we introduce TrafficSafe Attribution, a sentence-level feature attribution framework enabling conditional risk analysis. Findings show that alcohol-impaired driving is the leading factor in severe crashes, with aggressive and impairment-related behaviors having nearly twice the contribution for severe crashes compared to other driver behaviors. Furthermore, TrafficSafe Attribution highlights pivotal features during model training, guiding strategic crash data collection for iterative performance improvements. The proposed TrafficSafe offers a transformative leap in traffic safety research, providing a blueprint for translating advanced AI technologies into responsible, actionable, and life-saving outcomes.
- Abstract(参考訳): 事故発生の予測は、事故の分布とその要因を理解するために不可欠であり、積極的交通安全政策の介入の設計を可能にする。
しかし、既存の手法では、数値特性、テキストレポート、クラッシュ画像、環境条件、運転者行動記録など、交通事故データとの複雑な相互作用の解釈に苦慮している。
その結果、リッチなセマンティック情報をキャプチャして、これらの多様なデータソースに埋め込まれた複雑な相互関係を捉えることができず、重大なクラッシュリスク要因を特定する能力が制限される。
本研究では,LCMのクラッシュ予測と特徴属性をテキストベースの推論として再設定するフレームワークであるTrafficSafeを提案する。
インフラストラクチャ、環境、ドライバ、車両情報とともに58,903のリアルタイムレポートを含むマルチモーダルクラッシュデータセットを収集し、TrafficSafe Event Datasetにテキスト化する。
このデータセット上でのLLMのカスタマイズと微調整により、TrafficSafe LLMはベースライン上でF1スコアの平均42%の改善を実現している。
これらの予測を解釈し、コントリビューション要因を明らかにするために、条件付きリスク分析を可能にする文レベルの特徴属性フレームワークであるTrafficSafe Attributionを導入する。
その結果、アルコール欠乏運転が重度の事故の主要な要因であり、攻撃的および障害関連行動は他の運転者行動と比較して、重度の事故にほぼ2倍の寄与があることがわかった。
さらに、TrafficSafe Attributionは、モデルのトレーニング中に重要な機能を強調し、反復的なパフォーマンス改善のために戦略的クラッシュデータ収集を導く。
提案されているTrafficSafeは、交通安全研究の変革的な飛躍を提供し、高度なAI技術を責任があり、行動可能で、命を救う結果に変換するための青写真を提供する。
関連論文リスト
- Advanced Crash Causation Analysis for Freeway Safety: A Large Language Model Approach to Identifying Key Contributing Factors [0.0]
本研究は,大規模言語モデル(LLM)を利用して高速道路の事故データを解析し,それに応じて事故原因分析を行う。
微調整されたLlama3 8Bモデルは、ゼロショット分類によって事前にラベル付けされたデータなしでクラッシュ因果を識別するために使用された。
その結果, LLMはアルコール欠乏運転, スピード, 積極的運転, 運転不注意などの事故原因を効果的に同定できることが示唆された。
論文 参考訳(メタデータ) (2025-05-15T04:07:55Z) - CrashSage: A Large Language Model-Centered Framework for Contextual and Interpretable Traffic Crash Analysis [0.46040036610482665]
道路事故は毎年130万人が死亡し、世界経済の損失は18兆ドルを超えたと主張している。
CrashSageは, 4つの重要なイノベーションを通じて, クラッシュ解析とモデリングを促進するために設計された, LLM(Large Language Model)中心のフレームワークである。
論文 参考訳(メタデータ) (2025-05-08T00:23:18Z) - SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
MLLM(Multimodal Large Language Models)は、視覚データとテキストデータの両方を処理する。
構造化されていない知識と構造化されていない知識の両方を取り入れることでMLLMベースの自動運転システムを強化する新しいフレームワークであるSafeAutoを提案する。
論文 参考訳(メタデータ) (2025-02-28T21:53:47Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - An Explainable Machine Learning Approach to Traffic Accident Fatality Prediction [0.02730969268472861]
道路交通事故は世界中で公衆衛生上の脅威となっている。
本研究では,致命的および致命的でない道路事故を分類するための機械学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-18T12:41:56Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Crash Report Data Analysis for Creating Scenario-Wise, Spatio-Temporal
Attention Guidance to Support Computer Vision-based Perception of Fatal Crash
Risks [8.34084323253809]
本稿では,致命的な事故報告データからシナリオ的,時空間的注意誘導というデータ分析モデルを開発した。
検出されたオブジェクトの環境からの致命的なクラッシュとコンテキスト情報との関係を推定する。
本研究は, 予備CVモデルの設計と実装において, 改良された注意指導がいかに役立つかを示す。
論文 参考訳(メタデータ) (2021-09-06T19:43:37Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。