論文の概要: A Survey of Attacks on Large Language Models
- arxiv url: http://arxiv.org/abs/2505.12567v1
- Date: Sun, 18 May 2025 22:55:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.311003
- Title: A Survey of Attacks on Large Language Models
- Title(参考訳): 大規模言語モデルに対する攻撃調査
- Authors: Wenrui Xu, Keshab K. Parhi,
- Abstract要約: 大規模言語モデル(LLM)とLLMベースのエージェントは、現実世界の幅広いアプリケーションに広くデプロイされている。
本稿では, LLM および LLM ベースのエージェントを標的とした敵攻撃の詳細を体系的に概説する。
- 参考スコア(独自算出の注目度): 5.845689496906739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) and LLM-based agents have been widely deployed in a wide range of applications in the real world, including healthcare diagnostics, financial analysis, customer support, robotics, and autonomous driving, expanding their powerful capability of understanding, reasoning, and generating natural languages. However, the wide deployment of LLM-based applications exposes critical security and reliability risks, such as the potential for malicious misuse, privacy leakage, and service disruption that weaken user trust and undermine societal safety. This paper provides a systematic overview of the details of adversarial attacks targeting both LLMs and LLM-based agents. These attacks are organized into three phases in LLMs: Training-Phase Attacks, Inference-Phase Attacks, and Availability & Integrity Attacks. For each phase, we analyze the details of representative and recently introduced attack methods along with their corresponding defenses. We hope our survey will provide a good tutorial and a comprehensive understanding of LLM security, especially for attacks on LLMs. We desire to raise attention to the risks inherent in widely deployed LLM-based applications and highlight the urgent need for robust mitigation strategies for evolving threats.
- Abstract(参考訳): 大規模言語モデル(LLM)とLLMベースのエージェントは、医療診断、財務分析、カスタマーサポート、ロボティクス、自律運転など、現実世界の幅広いアプリケーションに広くデプロイされており、理解、推論、自然言語の生成といった強力な能力を拡大している。
しかし、LLMベースのアプリケーションの広範なデプロイは、悪意のある誤用、プライバシーの漏洩、ユーザの信頼を弱め、社会的安全性を損なうサービス破壊といった、重大なセキュリティと信頼性のリスクを露呈する。
本稿では, LLM および LLM ベースのエージェントを標的とした敵攻撃の詳細を体系的に概説する。
これらの攻撃は、トレーニング・フェーズ・アタック、推論・パース・アタック、アベイラビリティ・アンド・インテリティー・アタックの3つのフェーズに分けられる。
各フェーズにおいて、代表者の詳細を分析し、最近導入された攻撃方法と対応する防御方法について分析する。
我々は,LLMのセキュリティ,特にLLMに対する攻撃について,優れたチュートリアルと包括的理解を提供することを期待している。
我々は、広く展開されているLLMベースのアプリケーションに固有のリスクに注意を向け、脅威を進化させるための堅牢な緩和戦略の緊急の必要性を強調したい。
関連論文リスト
- Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - Emerging Security Challenges of Large Language Models [6.151633954305939]
大規模言語モデル(LLM)は、多くの異なる分野において短期間で記録的な普及を遂げた。
これらは、特定の下流タスクに合わせて調整されることなく、多様なデータでトレーニングされたオープンエンドモデルである。
従来の機械学習(ML)モデルは、敵の攻撃に対して脆弱である。
論文 参考訳(メタデータ) (2024-12-23T14:36:37Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
大規模言語モデル(LLM)を駆使したAIエージェントは、シームレスで自然な、コンテキスト対応のコミュニケーションを可能にすることによって、人間とコンピュータのインタラクションを変革した。
本稿では,AIエージェント内のLLMコアを標的とした敵攻撃という,重大な脆弱性について検討する。
論文 参考訳(メタデータ) (2024-12-05T18:38:30Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - A Security Risk Taxonomy for Prompt-Based Interaction With Large Language Models [5.077431021127288]
本稿では,大規模言語モデル(LLM)によるセキュリティリスクに着目し,現在の研究のギャップに対処する。
我々の研究は,ユーザモデル通信パイプラインに沿ったセキュリティリスクの分類を提案し,一般的に使用されている機密性,完全性,可用性(CIA)3つのトライアドと並行して,ターゲットタイプと攻撃タイプによる攻撃を分類する。
論文 参考訳(メタデータ) (2023-11-19T20:22:05Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。