論文の概要: Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation
- arxiv url: http://arxiv.org/abs/2412.04415v1
- Date: Thu, 05 Dec 2024 18:38:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:04.507779
- Title: Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation
- Title(参考訳): コアのターゲティング:直接LLM操作によるRAGベースのエージェントの攻撃方法
- Authors: Xuying Li, Zhuo Li, Yuji Kosuga, Yasuhiro Yoshida, Victor Bian,
- Abstract要約: 大規模言語モデル(LLM)を駆使したAIエージェントは、シームレスで自然な、コンテキスト対応のコミュニケーションを可能にすることによって、人間とコンピュータのインタラクションを変革した。
本稿では,AIエージェント内のLLMコアを標的とした敵攻撃という,重大な脆弱性について検討する。
- 参考スコア(独自算出の注目度): 4.241100280846233
- License:
- Abstract: AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication. While these advancements offer immense utility, they also inherit and amplify inherent safety risks such as bias, fairness, hallucinations, privacy breaches, and a lack of transparency. This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents. Specifically, we test the hypothesis that a deceptively simple adversarial prefix, such as \textit{Ignore the document}, can compel LLMs to produce dangerous or unintended outputs by bypassing their contextual safeguards. Through experimentation, we demonstrate a high attack success rate (ASR), revealing the fragility of existing LLM defenses. These findings emphasize the urgent need for robust, multi-layered security measures tailored to mitigate vulnerabilities at the LLM level and within broader agent-based architectures.
- Abstract(参考訳): 大規模言語モデル(LLM)を駆使したAIエージェントは、シームレスで自然な、コンテキスト対応のコミュニケーションを可能にすることによって、人間とコンピュータのインタラクションを変革した。
これらの進歩は巨大なユーティリティを提供するが、バイアス、公正性、幻覚、プライバシー侵害、透明性の欠如といった、固有の安全リスクを継承し、増幅する。
本稿では,AIエージェント内のLLMコアを標的とした敵攻撃という,重大な脆弱性について検討する。
具体的には,<textit{Ignore the document} のような知覚的に単純な敵の接頭辞が LLM にコンテキストセーフガードをバイパスすることで,危険あるいは意図しないアウトプットを生成することができるという仮説を検証した。
実験により,攻撃成功率(ASR)が向上し,既存のLLM防御の脆弱さが明らかとなった。
これらの知見は、LLMレベルおよびより広範なエージェントベースのアーキテクチャにおける脆弱性を軽減するために調整された、堅牢で多層的なセキュリティ対策の緊急の必要性を強調している。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification [35.16099878559559]
大規模言語モデル(LLM)は大きな発展を遂げ、現実世界のアプリケーションにデプロイされている。
エージェントが繰り返しまたは無関係なアクションを実行することを誤解させることで誤動作を引き起こす新しいタイプの攻撃を導入する。
実験の結果、これらの攻撃は複数のシナリオで80%以上の障害率を誘導できることがわかった。
論文 参考訳(メタデータ) (2024-07-30T14:35:31Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
システムプロンプトの漏洩は知的財産を侵害し、攻撃者に対する敵の偵察として機能する可能性がある。
我々は, LLM sycophancy 効果を利用して, 平均攻撃成功率 (ASR) を17.7%から86.2%に高めるユニークな脅威モデルを構築した。
7つのブラックボックス防衛戦略の緩和効果と、漏洩防止のためのオープンソースモデルを微調整する。
論文 参考訳(メタデータ) (2024-04-24T23:39:58Z) - Protecting Your LLMs with Information Bottleneck [20.870610473199125]
本稿では,情報ボトルネック原理に基づく防御機構であるIBProtector(Information Bottleneck Protector)を紹介する。
IBProtectorは、軽量で訓練可能な抽出器によって促進されるプロンプトを選択的に圧縮し、摂動する。
IBProtectorはジェイルブレイク対策において,現在の防御方法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-22T08:16:07Z) - The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative [55.08395463562242]
MLLM(Multimodal Large Language Models)は、AGI(Artificial General Intelligence)の新たな境界を常に定義している。
本稿では,MLLM社会において,悪意のあるコンテンツの間接的伝播という新たな脆弱性について検討する。
論文 参考訳(メタデータ) (2024-02-20T23:08:21Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on
Large Language Models [82.98081731588717]
大規模な言語モデルと外部コンテンツの統合は、間接的にインジェクション攻撃を行うアプリケーションを公開する。
本稿では,BIPIAと呼ばれる間接的インジェクション攻撃のリスクを評価するための最初のベンチマークについて紹介する。
我々は,素早い学習に基づく2つのブラックボックス法と,逆行訓練による微調整に基づくホワイトボックス防御法を開発した。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Evil Geniuses: Delving into the Safety of LLM-based Agents [35.49857256840015]
大言語モデル(LLM)は、大言語モデル(LLM)で再活性化されている。
本稿では, LLMをベースとしたエージェントの安全性について, エージェント量, 役割定義, 攻撃レベルという3つの観点から検討する。
論文 参考訳(メタデータ) (2023-11-20T15:50:09Z) - Hijacking Large Language Models via Adversarial In-Context Learning [8.15194326639149]
In-context Learning (ICL)は、特定の下流タスクにLLMを活用する強力なパラダイムとして登場した。
既存の攻撃は、検出しやすく、外部モデルに依存しているか、ICLに対する特異性を欠いている。
この研究は、これらの問題に対処するために、新たなICLに対するトランスファー可能な攻撃を導入する。
論文 参考訳(メタデータ) (2023-11-16T15:01:48Z) - MART: Improving LLM Safety with Multi-round Automatic Red-Teaming [72.2127916030909]
本稿では,自動対向的なプロンプト書き込みと安全な応答生成の両方を組み込んだMulti-round Automatic Red-Teaming(MART)手法を提案する。
敵のプロンプトベンチマークでは、安全アライメントが制限されたLDMの違反率は、MARTの4ラウンド後に84.7%まで減少する。
特に、非敵対的なプロンプトに対するモデルの有用性は反復を通して安定しており、LLMは命令に対する強い性能を維持していることを示している。
論文 参考訳(メタデータ) (2023-11-13T19:13:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。