Adaptive parameter-efficient fine-tuning via Hessian-informed subset selection
- URL: http://arxiv.org/abs/2505.12579v1
- Date: Sun, 18 May 2025 23:45:50 GMT
- Title: Adaptive parameter-efficient fine-tuning via Hessian-informed subset selection
- Authors: Shiyun Xu, Zhiqi Bu,
- Abstract summary: We propose a Hessian-informed approach to fine-tuning models.<n>AdaPEFT adapts to various tasks and models, in which the selected subset empirically transfers across training horizons and model sizes.
- Score: 8.885727065823156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) is a highly effective approach for adapting large pre-trained models to downstream tasks with minimal computational overhead. At the core, PEFT methods freeze most parameters and only trains a small subset (say $<0.1\%$ of total parameters). Notably, different PEFT methods select different subsets, resulting in varying levels of performance. This variation prompts a key question: how to effectively select the most influential subset to train? We formulate the subset selection as a multi-task problem: maximizing the performance and minimizing the number of trainable parameters. We leverage a series of transformations -- including $\epsilon$-constraint method and second-order Taylor approximation -- to arrive at the classical 0-1 knapsack problem, which we solve through the lens of Pareto optimality. Consequently, we propose AdaPEFT, a Hessian-informed PEFT that adapts to various tasks and models, in which the selected subset empirically transfers across training horizons and model sizes.
Related papers
- VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models [0.8875650122536799]
We introduce VectorFit, a new way of parameterization that efficiently utilizes the existing knowledge embedded in $W$ by adaptively training their singular vectors and biases.<n>We show that utilizing the structural and transformational properties of $W$ in this way can lead to high-rank incremental weight matrices $Delta W$, comparable to that of full fine-tuning.
arXiv Detail & Related papers (2025-03-25T10:36:27Z) - Bilevel ZOFO: Bridging Parameter-Efficient and Zeroth-Order Techniques for Efficient LLM Fine-Tuning and Meta-Training [44.48966200270378]
Fine-tuning pre-trained Large Language Models (LLMs) for downstream tasks using First-Order (FO)imats presents significant computational challenges.<n>We propose a bilevel optimization framework that complements ZO methods with PEFT to mitigate sensitivity to hard prompts.<n>Our Bilevel ZOFO method employs a double-loop optimization strategy, where only the gradient of the PEFT model and the forward pass of the base model are required.
arXiv Detail & Related papers (2025-02-05T20:47:44Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Step-by-Step Unmasking for Parameter-Efficient Fine-tuning of Large Language Models [18.877891285367216]
We introduce $textID3$, a novel selective PEFT method that calculates parameter importance continually.<n>We analytically show that $textID3$ reduces the number of gradient updates by a factor of two, enhancing computational efficiency.
arXiv Detail & Related papers (2024-08-26T17:58:53Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
Various parameter-efficient fine-tuning (PEFT) techniques have been proposed to enable computationally efficient fine-tuning while maintaining model performance.
We present LoRETTA, a framework that significantly reduces trainable parameters through tensor-train decomposition.
LoRETTA achieves comparable or better performance than most widely used PEFT methods with up to $100times$ fewer parameters on the LLaMA-2-7B models.
arXiv Detail & Related papers (2024-02-18T01:20:00Z) - Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning [30.251155072822055]
Prototype-based HyperAdapter (PHA) is a novel framework built on the adapter-tuning and hypernetwork.
It introduces an instance-dense retriever and prototypical hypernetwork to generate conditional modules in a sample-efficient manner.
We show that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.
arXiv Detail & Related papers (2023-10-18T02:42:17Z) - Parameter Efficient Multi-task Model Fusion with Partial Linearization [97.23530944186078]
We propose a novel method to improve multi-task fusion for parameter-efficient fine-tuning techniques.
Our approach partially linearizes only the adapter modules and applies task arithmetic over the linearized adapters.
We demonstrate that our partial linearization technique enables a more effective fusion of multiple tasks into a single model.
arXiv Detail & Related papers (2023-10-07T08:55:54Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - UniPELT: A Unified Framework for Parameter-Efficient Language Model
Tuning [64.638804236566]
We propose a unified framework, UniPELT, which incorporates different PELT methods as submodules and learns to activate the ones that best suit the current data or task setup.
Remarkably, on the GLUE benchmark, UniPELT consistently achieves 13pt gains compared to the best individual PELT method that it incorporates and even outperforms fine-tuning under different setups.
arXiv Detail & Related papers (2021-10-14T17:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.