Improving Multilingual Language Models by Aligning Representations through Steering
- URL: http://arxiv.org/abs/2505.12584v1
- Date: Mon, 19 May 2025 00:14:43 GMT
- Title: Improving Multilingual Language Models by Aligning Representations through Steering
- Authors: Omar Mahmoud, Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana,
- Abstract summary: Large language models (LLMS) process non-English tokens within their layer representations.<n>We demonstrate that steering a single model layer can notably enhance performance.<n>We highlight how advanced techniques like supervised fine tuning (textscsft) and reinforcement learning from human feedback improve multilingual capabilities.
- Score: 14.358813505154316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate how large language models (LLMS) process non-English tokens within their layer representations, an open question despite significant advancements in the field. Using representation steering, specifically by adding a learned vector to a single model layer's activations, we demonstrate that steering a single model layer can notably enhance performance. Our analysis shows that this approach achieves results comparable to translation baselines and surpasses state of the art prompt optimization methods. Additionally, we highlight how advanced techniques like supervised fine tuning (\textsc{sft}) and reinforcement learning from human feedback (\textsc{rlhf}) improve multilingual capabilities by altering representation spaces. We further illustrate how these methods align with our approach to reshaping LLMS layer representations.
Related papers
- LayAlign: Enhancing Multilingual Reasoning in Large Language Models via Layer-Wise Adaptive Fusion and Alignment Strategy [33.85811169010525]
Large language models (LLMs) exhibit suboptimal performance on low-resource languages.<n>Recent approaches have leveraged multilingual encoders alongside LLMs by introducing trainable parameters connecting the two models.<n>We propose aname, a framework that integrates representations from all encoder layers.
arXiv Detail & Related papers (2025-02-17T03:45:03Z) - EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
We propose a novel Multimodal Large Language Models (MLLM) that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches.
Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM.
We also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts.
arXiv Detail & Related papers (2024-09-25T08:22:00Z) - FUSE-ing Language Models: Zero-Shot Adapter Discovery for Prompt Optimization Across Tokenizers [55.2480439325792]
We propose FUSE, an approach to approximating an adapter layer that maps from one model's textual embedding space to another, even across different tokenizers.
We show the efficacy of our approach via multi-objective optimization over vision-language and causal language models for image captioning and sentiment-based image captioning.
arXiv Detail & Related papers (2024-08-09T02:16:37Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
We propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs)<n>We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map.<n>Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point.
arXiv Detail & Related papers (2024-07-31T11:40:29Z) - Understanding the role of FFNs in driving multilingual behaviour in LLMs [0.0]
In this paper, we conduct an in-depth analysis of the multilingual capabilities of a family of Large Language Models.
We introduce novel metrics to probe the model's multilingual behaviour at different layers and shed light on the impact of architectural choices on multilingual processing.
arXiv Detail & Related papers (2024-04-22T03:47:00Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - DPL: Decoupled Prompt Learning for Vision-Language Models [41.90997623029582]
We propose a new method, Decoupled Prompt Learning, which reformulates the attention in prompt learning to alleviate this problem.
Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning.
arXiv Detail & Related papers (2023-08-19T15:48:38Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
We develop a neural network based abstractive multi-document summarization (MDS) model.
We process the dependency information into the linguistic-guided attention mechanism.
With the help of linguistic signals, sentence-level relations can be correctly captured.
arXiv Detail & Related papers (2021-09-23T08:13:35Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.