TACOcc:Target-Adaptive Cross-Modal Fusion with Volume Rendering for 3D Semantic Occupancy
- URL: http://arxiv.org/abs/2505.12693v1
- Date: Mon, 19 May 2025 04:32:36 GMT
- Title: TACOcc:Target-Adaptive Cross-Modal Fusion with Volume Rendering for 3D Semantic Occupancy
- Authors: Luyao Lei, Shuo Xu, Yifan Bai, Xing Wei,
- Abstract summary: We propose a target-scale adaptive, symmetric retrieval mechanism for 3D semantic occupancy prediction.<n>It expands the neighborhood for large targets to enhance context awareness and shrinks it for small ones to improve efficiency and suppress noise.<n>In summary, we propose TACOcc, an adaptive multi-modal fusion framework for 3D semantic occupancy prediction, enhanced by volume rendering supervision.
- Score: 14.075911467687789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of multi-modal 3D occupancy prediction is limited by ineffective fusion, mainly due to geometry-semantics mismatch from fixed fusion strategies and surface detail loss caused by sparse, noisy annotations. The mismatch stems from the heterogeneous scale and distribution of point cloud and image features, leading to biased matching under fixed neighborhood fusion. To address this, we propose a target-scale adaptive, bidirectional symmetric retrieval mechanism. It expands the neighborhood for large targets to enhance context awareness and shrinks it for small ones to improve efficiency and suppress noise, enabling accurate cross-modal feature alignment. This mechanism explicitly establishes spatial correspondences and improves fusion accuracy. For surface detail loss, sparse labels provide limited supervision, resulting in poor predictions for small objects. We introduce an improved volume rendering pipeline based on 3D Gaussian Splatting, which takes fused features as input to render images, applies photometric consistency supervision, and jointly optimizes 2D-3D consistency. This enhances surface detail reconstruction while suppressing noise propagation. In summary, we propose TACOcc, an adaptive multi-modal fusion framework for 3D semantic occupancy prediction, enhanced by volume rendering supervision. Experiments on the nuScenes and SemanticKITTI benchmarks validate its effectiveness.
Related papers
- SDGOCC: Semantic and Depth-Guided Bird's-Eye View Transformation for 3D Multimodal Occupancy Prediction [8.723840755505817]
We propose a novel multimodal occupancy prediction network called SDG-OCC.<n>It incorporates a joint semantic and depth-guided view transformation and a fusion-to-occupancy-driven active distillation.<n>Our method achieves state-of-the-art (SOTA) performance with real-time processing on the Occ3D-nuScenes dataset.
arXiv Detail & Related papers (2025-07-22T23:49:40Z) - JointSplat: Probabilistic Joint Flow-Depth Optimization for Sparse-View Gaussian Splatting [10.690965024885358]
Reconstructing 3D scenes from sparse viewpoints is a long-standing challenge with wide applications.<n>Recent advances in feed-forward 3D Gaussian sparse-view reconstruction methods provide an efficient solution for real-time novel view synthesis.<n>We propose JointSplat, a unified framework that leverages the complementarity between optical flow and depth.
arXiv Detail & Related papers (2025-06-04T12:04:40Z) - RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS [79.15416002879239]
3D Gaussian Splatting has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling.<n>Existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images.<n>We propose RobustSplat, a robust solution based on two critical designs.
arXiv Detail & Related papers (2025-06-03T11:13:48Z) - Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting [0.3749861135832072]
This work implements an adaptive densification strategy that dynamically refines regions with high image gradients.<n>It results in a denser and more detailed gaussian means where needed, without sacrificing rendering efficiency.
arXiv Detail & Related papers (2025-04-08T07:15:58Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - OccLoff: Learning Optimized Feature Fusion for 3D Occupancy Prediction [5.285847977231642]
3D semantic occupancy prediction is crucial for ensuring the safety in autonomous driving.
Existing fusion-based occupancy methods typically involve performing a 2D-to-3D view transformation on image features.
We propose OccLoff, a framework that Learns to optimize Feature Fusion for 3D occupancy prediction.
arXiv Detail & Related papers (2024-11-06T06:34:27Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.<n>Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.<n>Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - Co-Occ: Coupling Explicit Feature Fusion with Volume Rendering Regularization for Multi-Modal 3D Semantic Occupancy Prediction [10.698054425507475]
This letter presents a novel multi-modal, i.e., LiDAR-camera 3D semantic occupancy prediction framework, dubbed Co-Occ.
volume rendering in the feature space can proficiently bridge the gap between 3D LiDAR sweeps and 2D images.
arXiv Detail & Related papers (2024-04-06T09:01:19Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating semantic 3D maps suitable for autonomous agents in unstructured environments.
It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions.
The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics.
arXiv Detail & Related papers (2023-09-26T08:03:10Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.