MVAR: Visual Autoregressive Modeling with Scale and Spatial Markovian Conditioning
- URL: http://arxiv.org/abs/2505.12742v1
- Date: Mon, 19 May 2025 05:56:44 GMT
- Title: MVAR: Visual Autoregressive Modeling with Scale and Spatial Markovian Conditioning
- Authors: Jinhua Zhang, Wei Long, Minghao Han, Weiyi You, Shuhang Gu,
- Abstract summary: We propose a novel Markovian Visual AutoRegressive modeling framework to reduce the complexity of conditional probability modeling.<n>Specifically, we introduce a scale-Markov trajectory that only takes as input the features of adjacent preceding scale for next-scale prediction.<n>We also propose spatial-Markov attention, which restricts the attention of each token to a localized neighborhood of size k at corresponding positions on adjacent scales.
- Score: 18.419771643052297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Essential to visual generation is efficient modeling of visual data priors. Conventional next-token prediction methods define the process as learning the conditional probability distribution of successive tokens. Recently, next-scale prediction methods redefine the process to learn the distribution over multi-scale representations, significantly reducing generation latency. However, these methods condition each scale on all previous scales and require each token to consider all preceding tokens, exhibiting scale and spatial redundancy. To better model the distribution by mitigating redundancy, we propose Markovian Visual AutoRegressive modeling (MVAR), a novel autoregressive framework that introduces scale and spatial Markov assumptions to reduce the complexity of conditional probability modeling. Specifically, we introduce a scale-Markov trajectory that only takes as input the features of adjacent preceding scale for next-scale prediction, enabling the adoption of a parallel training strategy that significantly reduces GPU memory consumption. Furthermore, we propose spatial-Markov attention, which restricts the attention of each token to a localized neighborhood of size k at corresponding positions on adjacent scales, rather than attending to every token across these scales, for the pursuit of reduced modeling complexity. Building on these improvements, we reduce the computational complexity of attention calculation from O(N^2) to O(Nk), enabling training with just eight NVIDIA RTX 4090 GPUs and eliminating the need for KV cache during inference. Extensive experiments on ImageNet demonstrate that MVAR achieves comparable or superior performance with both small model trained from scratch and large fine-tuned models, while reducing the average GPU memory footprint by 3.0x.
Related papers
- Saliency-driven Dynamic Token Pruning for Large Language Models [32.903622070917194]
Saliency-driven Dynamic Token Pruning (SDTP)<n>A lightweight saliency-driven prediction module is designed to estimate the importance score of each token with its hidden state.<n>A ranking-based optimization strategy is proposed to minimize the ranking divergence of the saliency score and the predicted importance score.
arXiv Detail & Related papers (2025-04-06T15:15:07Z) - FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching [34.112157859384645]
We introduce FlowAR, a next scale prediction method featuring a streamlined scale design.<n>This eliminates the need for VAR's intricate multi-scale residual tokenizer.<n>We validate the effectiveness of FlowAR on the challenging ImageNet-256 benchmark.
arXiv Detail & Related papers (2024-12-19T18:59:31Z) - M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation [39.97174784206976]
We show that this scale-wise autoregressive framework can be effectively decoupled into textitintra-scale modeling
We apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead.
Experiments demonstrate that our method outperforms existing models in both image quality and generation speed.
arXiv Detail & Related papers (2024-11-15T18:54:42Z) - Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
We propose approximate Machine Unlearning algorithms to reduce the generation of specific types of images, characterized by samples from a forget distribution''
We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines.
arXiv Detail & Related papers (2024-11-04T13:15:28Z) - TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction [61.295716741720284]
TokenUnify is a novel pretraining method that integrates random token prediction, next-token prediction, and next-all token prediction.
Cooperated with TokenUnify, we have assembled a large-scale electron microscopy (EM) image dataset with ultra-high resolution.
This dataset includes over 120 million annotated voxels, making it the largest neuron segmentation dataset to date.
arXiv Detail & Related papers (2024-05-27T05:45:51Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
We reform the conv layer by resorting to the scale-space theory.
We build a novel style named SCale AttentioN Conv Neural Network (textbfSCAN-CNN)
As a single-shot scheme, the inference is more efficient than multi-shot fusion.
arXiv Detail & Related papers (2022-09-19T06:35:04Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
We propose a content-based sparse attention method, as an alternative to dense self-attention.
Specifically, we cluster and then aggregate key and value tokens, as a content-based method of reducing the total token count.
The resulting clustered-token sequence retains the semantic diversity of the original signal, but can be processed at a lower computational cost.
arXiv Detail & Related papers (2022-08-28T04:18:27Z) - EV-VGCNN: A Voxel Graph CNN for Event-based Object Classification [18.154951807178943]
Event cameras report sparse intensity changes and hold noticeable advantages of low power consumption, high dynamic range, and high response speed for visual perception and understanding on portable devices.
Event-based learning methods have recently achieved massive success on object recognition by integrating events into dense frame-based representations to apply traditional 2D learning algorithms.
These approaches introduce much redundant information during the sparse-to-dense conversion and necessitate models with heavy-weight and large capacities, limiting the potential of event cameras on real-life applications.
arXiv Detail & Related papers (2021-06-01T04:07:03Z) - Scaling Hidden Markov Language Models [118.55908381553056]
This work revisits the challenge of scaling HMMs to language modeling datasets.
We propose methods for scaling HMMs to massive state spaces while maintaining efficient exact inference, a compact parameterization, and effective regularization.
arXiv Detail & Related papers (2020-11-09T18:51:55Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.