論文の概要: PEER pressure: Model-to-Model Regularization for Single Source Domain Generalization
- arxiv url: http://arxiv.org/abs/2505.12745v1
- Date: Mon, 19 May 2025 06:01:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.433387
- Title: PEER pressure: Model-to-Model Regularization for Single Source Domain Generalization
- Title(参考訳): PEER圧力:単一ソース領域一般化のためのモデルからモデルへの正規化
- Authors: Dong Kyu Cho, Inwoo Hwang, Sanghack Lee,
- Abstract要約: 対象領域におけるこのような拡張に基づく手法の性能は、訓練中に普遍的に変動することを示す。
本稿では,新しい一般化法を提案する。
Space Ensemble with Entropy Regularization (PEER) – プロキシモデルを使用して、拡張データを学ぶ。
- 参考スコア(独自算出の注目度): 12.15086255236961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation is a popular tool for single source domain generalization, which expands the source domain by generating simulated ones, improving generalization on unseen target domains. In this work, we show that the performance of such augmentation-based methods in the target domains universally fluctuates during training, posing challenges in model selection under realistic scenarios. We argue that the fluctuation stems from the inability of the model to accumulate the knowledge learned from diverse augmentations, exacerbating feature distortion during training. Based on this observation, we propose a novel generalization method, coined Parameter-Space Ensemble with Entropy Regularization (PEER), that uses a proxy model to learn the augmented data on behalf of the main model. The main model is updated by averaging its parameters with the proxy model, progressively accumulating knowledge over the training steps. Maximizing the mutual information between the output representations of the two models guides the learning process of the proxy model, mitigating feature distortion during training. Experimental results demonstrate the effectiveness of PEER in reducing the OOD performance fluctuation and enhancing generalization across various datasets, including PACS, Digits, Office-Home, and VLCS. Notably, our method with simple random augmentation achieves state-of-the-art performance, surpassing prior approaches on sDG that utilize complex data augmentation strategies.
- Abstract(参考訳): データ拡張(Data augmentation)は、単一ソースドメインの一般化に人気があるツールで、シミュレートされたドメインを生成してソースドメインを拡張することで、目に見えないターゲットドメインの一般化を改善する。
本研究では,対象領域におけるこのような拡張に基づく手法の性能が訓練中に普遍的に変動することを示し,現実的なシナリオ下でのモデル選択において課題を提起する。
この揺らぎは、様々な強化から学んだ知識を蓄積できないことによるものであり、訓練中に特徴歪みが悪化することに起因すると我々は主張する。
そこで本研究では,パラメータ空間アンサンブルとエントロピー規則化(PEER)を組み合わせた新しい一般化手法を提案する。
メインモデルは、パラメータをプロキシモデルで平均化し、トレーニングステップに関する知識を段階的に蓄積することで更新される。
2つのモデルの出力表現間の相互情報の最大化は、訓練中の特徴歪みを軽減し、プロキシモデルの学習プロセスを導く。
実験の結果,PEERはPACS,Digits,Office-Home,VLCSなどの各種データセットにおけるOOD性能変動の低減と一般化の促進に有効であることが示された。
特に, この手法は, 複雑なデータ拡張戦略を利用するsDGに先行する手法を超越して, 最先端の性能を実現する。
関連論文リスト
- Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
強化学習(RL)に基づく微調整は、訓練後の言語モデルにおいて重要なステップとなっている。
数理推論のためのRLファインタニングを、スクラッチから完全にトレーニングモデルを用いて体系的にエンドツーエンドに研究する。
論文 参考訳(メタデータ) (2025-04-10T17:15:53Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Masked Generative Priors Improve World Models Sequence Modelling Capabilities [19.700020499490137]
Masked Generative Modellingはより効率的で優れた帰納的バイアスとして登場した。
GIT-STORMは、Atari 100kベンチマークでRLタスクのパフォーマンスが大幅に向上したことを示している。
トランスフォーマーをベースとした世界モデルが初めて連続行動環境に適用し、先行研究における大きなギャップに対処する。
論文 参考訳(メタデータ) (2024-10-10T11:52:07Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
ドメイン一般化(DG)は、複数のソースドメインを活用してドメイン一般化可能なモデルを学ぶことで、この問題を克服することを目的としている。
本稿では,AugLearnと呼ばれる新しい拡張型DG手法を提案する。
AugLearnは、PACS、Office-Home、Digits-DGの3つの標準DGベンチマークで効果を示す。
論文 参考訳(メタデータ) (2022-10-25T18:51:51Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。