Unlearning for Federated Online Learning to Rank: A Reproducibility Study
- URL: http://arxiv.org/abs/2505.12791v1
- Date: Mon, 19 May 2025 07:23:46 GMT
- Title: Unlearning for Federated Online Learning to Rank: A Reproducibility Study
- Authors: Yiling Tao, Shuyi Wang, Jiaxi Yang, Guido Zuccon,
- Abstract summary: This paper reports on the effectiveness and efficiency of federated unlearning strategies within Federated Online Learning to Rank (FOLTR)<n>Our study rigorously assesses the effectiveness of unlearning strategies in managing both under-unlearning and over-unlearning scenarios.
- Score: 24.712358666002658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper reports on findings from a comparative study on the effectiveness and efficiency of federated unlearning strategies within Federated Online Learning to Rank (FOLTR), with specific attention to systematically analysing the unlearning capabilities of methods in a verifiable manner. Federated approaches to ranking of search results have recently garnered attention to address users privacy concerns. In FOLTR, privacy is safeguarded by collaboratively training ranking models across decentralized data sources, preserving individual user data while optimizing search results based on implicit feedback, such as clicks. Recent legislation introduced across numerous countries is establishing the so called "the right to be forgotten", according to which services based on machine learning models like those in FOLTR should provide capabilities that allow users to remove their own data from those used to train models. This has sparked the development of unlearning methods, along with evaluation practices to measure whether unlearning of a user data successfully occurred. Current evaluation practices are however often controversial, necessitating the use of multiple metrics for a more comprehensive assessment -- but previous proposals of unlearning methods only used single evaluation metrics. This paper addresses this limitation: our study rigorously assesses the effectiveness of unlearning strategies in managing both under-unlearning and over-unlearning scenarios using adapted, and newly proposed evaluation metrics. Thanks to our detailed analysis, we uncover the strengths and limitations of five unlearning strategies, offering valuable insights into optimizing federated unlearning to balance data privacy and system performance within FOLTR. We publicly release our code and complete results at https://github.com/Iris1026/Unlearning-for-FOLTR.git.
Related papers
- Rectifying Privacy and Efficacy Measurements in Machine Unlearning: A New Inference Attack Perspective [42.003102851493885]
We propose RULI (Rectified Unlearning Evaluation Framework via Likelihood Inference) to address critical gaps in the evaluation of inexact unlearning methods.<n>RULI introduces a dual-objective attack to measure both unlearning efficacy and privacy risks at a per-sample granularity.<n>Our findings reveal significant vulnerabilities in state-of-the-art unlearning methods, exposing privacy risks underestimated by existing methods.
arXiv Detail & Related papers (2025-06-16T00:30:02Z) - OpenUnlearning: Accelerating LLM Unlearning via Unified Benchmarking of Methods and Metrics [101.78963920333342]
We introduce OpenUnlearning, a standardized framework for benchmarking large language models (LLMs) unlearning methods and metrics.<n>OpenUnlearning integrates 9 unlearning algorithms and 16 diverse evaluations across 3 leading benchmarks.<n>We also benchmark diverse unlearning methods and provide a comparative analysis against an extensive evaluation suite.
arXiv Detail & Related papers (2025-06-14T20:16:37Z) - Does Machine Unlearning Truly Remove Model Knowledge? A Framework for Auditing Unlearning in LLMs [58.24692529185971]
We introduce a comprehensive auditing framework for unlearning evaluation comprising three benchmark datasets, six unlearning algorithms, and five prompt-based auditing methods.<n>We evaluate the effectiveness and robustness of different unlearning strategies.
arXiv Detail & Related papers (2025-05-29T09:19:07Z) - MUBox: A Critical Evaluation Framework of Deep Machine Unlearning [13.186439491394474]
MUBox is a comprehensive platform designed to evaluate unlearning methods in deep learning.<n> MUBox integrates 23 advanced unlearning techniques, tested across six practical scenarios with 11 diverse evaluation metrics.
arXiv Detail & Related papers (2025-05-13T13:50:51Z) - Privacy-Preserved Automated Scoring using Federated Learning for Educational Research [1.2556373621040728]
We propose a federated learning (FL) framework for automated scoring of educational assessments.<n>We benchmark our model against two state-of-the-art FL methods and a centralized learning baseline.<n>Results show that our model achieves the highest accuracy (94.5%) among FL approaches.
arXiv Detail & Related papers (2025-03-12T19:06:25Z) - Effective and secure federated online learning to rank [5.874142059884521]
Online Learning to Rank optimises ranking models using implicit user feedback, such as clicks.<n>It addresses several drawbacks such as the high cost of human annotations, potential misalignment between user preferences and human judgements, and the rapid changes in user query intents.<n>This thesis presents a comprehensive study on Federated Online Learning to Rank, addressing its effectiveness, robustness, security, and unlearning capabilities.
arXiv Detail & Related papers (2024-12-26T05:53:10Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Towards Reliable Empirical Machine Unlearning Evaluation: A Cryptographic Game Perspective [5.724350004671127]
Machine unlearning updates machine learning models to remove information from specific training samples, complying with data protection regulations.<n>Despite the recent development of numerous unlearning algorithms, reliable evaluation of these algorithms remains an open research question.<n>This work presents a novel and reliable approach to empirically evaluating unlearning algorithms, paving the way for the development of more effective unlearning techniques.
arXiv Detail & Related papers (2024-04-17T17:20:27Z) - Exploring Federated Unlearning: Review, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.<n>This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.<n>We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
This work presents an evaluation of Machine Unlearning algorithms based on uncertainty.
This is the first definition of a general evaluation of our best knowledge.
arXiv Detail & Related papers (2022-08-23T09:37:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.