PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models
- URL: http://arxiv.org/abs/2404.02948v4
- Date: Wed, 09 Apr 2025 06:54:20 GMT
- Title: PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models
- Authors: Fanxu Meng, Zhaohui Wang, Muhan Zhang,
- Abstract summary: We introduce Principal Singular values and Singular vectors Adaptation (PiSSA)<n>PiSSA shares the same architecture as LoRA, but initializes the adaptor matrices $A$ and $B$ with the principal components of the original matrix $W$, and put the remaining components into a residual matrix $Wres in mathbbRm times n$ which is frozen during fine-tuning.<n>Compared to LoRA, PiSSA updates the principal components while freezing the "residual" parts, allowing faster convergence and enhanced performance.
- Score: 23.890454137522774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To parameter-efficiently fine-tune (PEFT) large language models (LLMs), the low-rank adaptation (LoRA) method approximates the model changes $\Delta W \in \mathbb{R}^{m \times n}$ through the product of two matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, where $r \ll \min(m, n)$, $A$ is initialized with Gaussian noise, and $B$ with zeros. LoRA freezes the original model $W$ and updates the "Noise & Zero" adapter, which may lead to slow convergence. To overcome this limitation, we introduce Principal Singular values and Singular vectors Adaptation (PiSSA). PiSSA shares the same architecture as LoRA, but initializes the adaptor matrices $A$ and $B$ with the principal components of the original matrix $W$, and put the remaining components into a residual matrix $W^{res} \in \mathbb{R}^{m \times n}$ which is frozen during fine-tuning. Compared to LoRA, PiSSA updates the principal components while freezing the "residual" parts, allowing faster convergence and enhanced performance. Comparative experiments of PiSSA and LoRA across 12 different models, ranging from 184M to 70B, encompassing 5 NLG and 8 NLU tasks, reveal that PiSSA consistently outperforms LoRA under identical experimental setups. On the GSM8K benchmark, Mistral-7B fine-tuned with PiSSA achieves an accuracy of 72.86%, surpassing LoRA's 67.7% by 5.16%. Due to the same architecture, PiSSA is also compatible with quantization to further reduce the memory requirement of fine-tuning. Compared to QLoRA, QPiSSA exhibits smaller quantization errors in the initial stages. Fine-tuning LLaMA-3-70B on GSM8K, QPiSSA attains an accuracy of 86.05%, exceeding the performances of QLoRA at 81.73%. Leveraging a fast SVD technique, PiSSA can be initialized in only a few seconds, presenting a negligible cost for transitioning from LoRA to PiSSA. Code is available at https://github.com/GraphPKU/PiSSA.
Related papers
- Kronecker-LoRA: hybrid Kronecker-LoRA adapters for scalable, sustainable fine-tuning [0.5629386140722666]
We introduce textbfKron-LoRA, a two-stage adapter that first factorizes each frozen linear update as a Kronecker product.<n>Kron-LoRA retains the expressivity of the update while using up to $4!times!$ fewer parameters than a standard rank-8 LoRA adapter.
arXiv Detail & Related papers (2025-08-04T00:02:15Z) - SingLoRA: Low Rank Adaptation Using a Single Matrix [7.828928639229988]
Low-Rank Adaptation (LoRA) has significantly advanced parameter-efficient fine-tuning of large pretrained models.<n>We propose SingLoRA, which reformulates low-rank adaptation by learning the weights update as a decomposition of a single low-rank matrix multiplied by its transpose.
arXiv Detail & Related papers (2025-07-08T01:11:30Z) - WeightLoRA: Keep Only Necessary Adapters [79.89637596855]
Low-rank adaptation ($texttLoRA$) adds trainable adapters to selected layers.<n>We propose a novel method, $textttWeightLoRA$, which overcomes this issue by adaptive selection of the most critical $textttLoRA$ heads.<n>We conduct experiments for a series of competitive benchmarks and DeBERTa, BART, and Llama models, comparing our method with different adaptive approaches.
arXiv Detail & Related papers (2025-06-03T10:33:16Z) - FedSVD: Adaptive Orthogonalization for Private Federated Learning with LoRA [61.79405341803085]
Low-Rank Adaptation (LoRA) is widely used for efficient fine-tuning of language models in federated learning (FL)<n>Low-Rank Adaptation (LoRA) is widely used for efficient fine-tuning of language models in federated learning (FL)
arXiv Detail & Related papers (2025-05-19T07:32:56Z) - Towards Symmetric Low-Rank Adapters [3.3317825075368908]
We introduce Symmetric Low-Rank Adapters, an optimized variant of LoRA with even fewer weights.
This method utilizes Low-Rank Symmetric Weight Matrices to learn downstream tasks more efficiently.
arXiv Detail & Related papers (2025-03-29T21:52:17Z) - R-LoRA: Random Initialization of Multi-Head LoRA for Multi-Task Learning [12.431575579432458]
Low-rank Adaptation (LoRA) is one of the most popular parameter-efficient fine-tuning methods.
We propose R-LoRA, which incorporates Multi-Head Randomization.
Experiments demonstrate that R-LoRA is better at capturing task-specific knowledge.
arXiv Detail & Related papers (2025-02-21T13:30:21Z) - Dynamic Low-Rank Sparse Adaptation for Large Language Models [54.1231638555233]
Low-rank Sparse Adaptation (LoSA) is a novel method that seamlessly integrates low-rank adaptation into sparse LLM sparsity.
LoSA dynamically sparsifies the LoRA outcomes based on the corresponding sparse weights during fine-tuning.
LoSA can efficiently boost the efficacy of sparse LLMs within a few hours, without introducing any additional inferential burden.
arXiv Detail & Related papers (2025-02-20T18:37:32Z) - Train Small, Infer Large: Memory-Efficient LoRA Training for Large Language Models [23.442612142677504]
Low-Rank Adaption (LoRA) offers a cost-effective fine-tuning solution for large language models.
However, the memory footprint of LoRA is largely dominated by the original model parameters.
We propose LoRAM, a memory-efficient LoRA training scheme.
arXiv Detail & Related papers (2025-02-19T08:39:15Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - CoRA: Optimizing Low-Rank Adaptation with Common Subspace of Large Language Models [7.108651381160281]
Low-Rank Adaptation (LoRA) strategy balances efficiency and performance in fine-tuning large models.
We propose textbfCoRA: leveraging shared knowledge to optimize LoRA training by substituting its matrix $B$ with a common subspace from large models.
Our experiments show that the first approach achieves the same efficacy as the original LoRA fine-tuning while being more efficient than halving parameters.
arXiv Detail & Related papers (2024-08-31T12:48:27Z) - SORSA: Singular Values and Orthonormal Regularized Singular Vectors Adaptation of Large Language Models [5.573502364188814]
We propose Singular Values and Orthonormal Regularized Singular Vectors Adaptation, or SORSA, a novel PEFT method.
Each SORSA adapter consists of two main parts: trainable principal singular weights $W_p = U_p textdiag(S_p) Vtop_p$, and frozen residual weights $W_r = U_r textdiag(S_r) Vtop_r$.
arXiv Detail & Related papers (2024-08-21T04:47:26Z) - LoRA-GA: Low-Rank Adaptation with Gradient Approximation [5.685201910521295]
Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs.
LoRA offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters.
LoRA converges at a considerably slower rate compared to full fine-tuning, leading to increased overall compute and often worse test performance.
arXiv Detail & Related papers (2024-07-06T08:37:21Z) - LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters [11.23006032094776]
We introduce LoRA-XS, a novel low-rank adaptation method that considerably reduces the trainable parameters while showing superior or competitive performance.
LoRA-XS achieves a remarkable reduction of trainable parameters by over 100x in 7B models compared to LoRA.
arXiv Detail & Related papers (2024-05-27T19:07:13Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiRE comprises of two novel components: (i) a compression scheme to cheaply predict top-$k$ rows/columns with high recall, followed by full computation restricted to the predicted subset, and (ii) DA-TOP-$k$: an efficient multi-device approximate top-$k$ operator.
We demonstrate that on a one billion parameter model, HiRE applied to both the softmax as well as feedforward layers, achieves almost matching pretraining and downstream accuracy, and speeds up inference latency by $1.47times$ on a single TPUv5e device.
arXiv Detail & Related papers (2024-02-14T18:04:36Z) - Riemannian Preconditioned LoRA for Fine-Tuning Foundation Models [45.72323731094864]
Low-Rank Adaptation (LoRA) emerges as a popular parameter-efficient fine-tuning (PEFT) method.
In this work, we study the enhancement of LoRA training by introducing an $r times r$ preconditioner in each gradient step.
arXiv Detail & Related papers (2024-02-04T05:05:43Z) - TCNCA: Temporal Convolution Network with Chunked Attention for Scalable
Sequence Processing [52.64837396100988]
MEGA is a recent transformer-based architecture, which utilizes a linear recurrent operator whose parallel computation, based on the FFT, scales as $O(LlogL)$, with $L$ being the sequence length.
We build upon their approach by replacing the linear recurrence with a special temporal convolutional network which permits larger receptive field size with shallower networks, and reduces the computational complexity to $O(L)$.
We evaluate TCNCA on EnWik8 language modeling, long-range-arena (LRA) sequence classification, as well as a synthetic reasoning benchmark associative recall.
arXiv Detail & Related papers (2023-12-09T16:12:25Z) - LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning [66.85589263870702]
Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component.
Experiments on finetuning RoBERTa and LLaMA-2 demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines.
arXiv Detail & Related papers (2023-11-20T18:57:41Z) - Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of Low-Rank
Matrices [27.693028578653394]
Delta-LoRA is a novel parameter-efficient approach to fine-tune large language models (LLMs)
In contrast to LoRA and other low-rank adaptation methods such as AdaLoRA, Delta-LoRA not only updates the low-rank matrices $bA$ and $bB$, but also propagate the learning to the pre-trained weights $bW$.
arXiv Detail & Related papers (2023-09-05T17:40:34Z) - HAWQV3: Dyadic Neural Network Quantization [73.11579145354801]
Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values.
We present HAWQV3, a novel mixed-precision integer-only quantization framework.
arXiv Detail & Related papers (2020-11-20T23:51:43Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.