Reasoning BO: Enhancing Bayesian Optimization with Long-Context Reasoning Power of LLMs
- URL: http://arxiv.org/abs/2505.12833v1
- Date: Mon, 19 May 2025 08:20:40 GMT
- Title: Reasoning BO: Enhancing Bayesian Optimization with Long-Context Reasoning Power of LLMs
- Authors: Zhuo Yang, Lingli Ge, Dong Han, Tianfan Fu, Yuqiang Li,
- Abstract summary: This paper designs Reasoning BO, a novel framework that leverages reasoning models to guide the sampling process in BO.<n> Reasoning BO provides real-time sampling recommendations along with critical insights grounded in plausible scientific theories.<n>The framework demonstrates its capability to progressively refine sampling strategies through real-time insights and hypothesis evolution.
- Score: 13.478684527247129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world scientific and industrial applications require the optimization of expensive black-box functions. Bayesian Optimization (BO) provides an effective framework for such problems. However, traditional BO methods are prone to get trapped in local optima and often lack interpretable insights. To address this issue, this paper designs Reasoning BO, a novel framework that leverages reasoning models to guide the sampling process in BO while incorporating multi-agent systems and knowledge graphs for online knowledge accumulation. By integrating the reasoning and contextual understanding capabilities of Large Language Models (LLMs), we can provide strong guidance to enhance the BO process. As the optimization progresses, Reasoning BO provides real-time sampling recommendations along with critical insights grounded in plausible scientific theories, aiding in the discovery of superior solutions within the search space. We systematically evaluate our approach across 10 diverse tasks encompassing synthetic mathematical functions and complex real-world applications. The framework demonstrates its capability to progressively refine sampling strategies through real-time insights and hypothesis evolution, effectively identifying higher-performing regions of the search space for focused exploration. This process highlights the powerful reasoning and context-learning abilities of LLMs in optimization scenarios. For example, in the Direct Arylation task, our method increased the yield to 60.7%, whereas traditional BO achieved only a 25.2% yield. Furthermore, our investigation reveals that smaller LLMs, when fine-tuned through reinforcement learning, can attain comparable performance to their larger counterparts. This enhanced reasoning capability paves the way for more efficient automated scientific experimentation while maintaining computational feasibility.
Related papers
- Are Large Brainwave Foundation Models Capable Yet? Insights from Fine-tuning [41.40603531008809]
We evaluate current Large Brainwave Foundation Models (LBMs) through systematic fine-tuning experiments.<n>Our analysis shows that state-of-the-art LBMs achieve only marginal improvements (0.9%-1.2%) over traditional deep architectures.
arXiv Detail & Related papers (2025-07-01T21:21:42Z) - Language-Based Bayesian Optimization Research Assistant (BORA) [0.0]
Contextualizing domain knowledge is a powerful approach to guide searches for fruitful regions.<n>Here, we propose use of Language Models (LLMs) for contextualizing search optimization.
arXiv Detail & Related papers (2025-01-27T17:20:04Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.<n>Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.<n>We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - ADO-LLM: Analog Design Bayesian Optimization with In-Context Learning of Large Language Models [5.642568057913696]
This paper presents ADO-LLM, the first work integrating large language models (LLMs) with Bayesian Optimization for analog design optimization.<n>ADO-LLM leverages the LLM's ability to infuse domain knowledge to rapidly generate viable design points to remedy BO's inefficiency in finding high value design areas.<n>We evaluate the proposed framework on two different types of analog circuits and demonstrate notable improvements in design efficiency and effectiveness.
arXiv Detail & Related papers (2024-06-26T21:42:50Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
We present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within Bayesian optimization.
At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations.
Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse.
arXiv Detail & Related papers (2024-02-06T11:44:06Z) - Efficient Reinforcement Learning via Decoupling Exploration and Utilization [6.305976803910899]
Reinforcement Learning (RL) has achieved remarkable success across multiple fields and applications, including gaming, robotics, and autonomous vehicles.
In this work, our aim is to train agent with efficient learning by decoupling exploration and utilization, so that agent can escaping the conundrum of suboptimal Solutions.
The above idea is implemented in the proposed OPARL (Optimistic and Pessimistic Actor Reinforcement Learning) algorithm.
arXiv Detail & Related papers (2023-12-26T09:03:23Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.