EPIC: Explanation of Pretrained Image Classification Networks via Prototype
- URL: http://arxiv.org/abs/2505.12897v1
- Date: Mon, 19 May 2025 09:32:20 GMT
- Title: EPIC: Explanation of Pretrained Image Classification Networks via Prototype
- Authors: Piotr Borycki, Magdalena Trędowicz, Szymon Janusz, Jacek Tabor, Przemysław Spurek, Arkadiusz Lewicki, Łukasz Struski,
- Abstract summary: EPIC (Explanation of Pretrained Image Classification) is a novel approach that bridges the gap between ante-hoc and post-hoc explanations.<n>It delivers intuitive, prototype-based explanations inspired by ante-hoc techniques.<n>We evaluate EPIC on benchmark datasets commonly used in prototype-based explanations.
- Score: 6.619564359642066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable AI (XAI) methods generally fall into two categories. Post-hoc approaches generate explanations for pre-trained models and are compatible with various neural network architectures. These methods often use feature importance visualizations, such as saliency maps, to indicate which input regions influenced the model's prediction. Unfortunately, they typically offer a coarse understanding of the model's decision-making process. In contrast, ante-hoc (inherently explainable) methods rely on specially designed model architectures trained from scratch. A notable subclass of these methods provides explanations through prototypes, representative patches extracted from the training data. However, prototype-based approaches have limitations: they require dedicated architectures, involve specialized training procedures, and perform well only on specific datasets. In this work, we propose EPIC (Explanation of Pretrained Image Classification), a novel approach that bridges the gap between these two paradigms. Like post-hoc methods, EPIC operates on pre-trained models without architectural modifications. Simultaneously, it delivers intuitive, prototype-based explanations inspired by ante-hoc techniques. To the best of our knowledge, EPIC is the first post-hoc method capable of fully replicating the core explanatory power of inherently interpretable models. We evaluate EPIC on benchmark datasets commonly used in prototype-based explanations, such as CUB-200-2011 and Stanford Cars, alongside large-scale datasets like ImageNet, typically employed by post-hoc methods. EPIC uses prototypes to explain model decisions, providing a flexible and easy-to-understand tool for creating clear, high-quality explanations.
Related papers
- How to Probe: Simple Yet Effective Techniques for Improving Post-hoc Explanations [69.72654127617058]
Post-hoc importance attribution methods are a popular tool for "explaining" Deep Neural Networks (DNNs)<n>In this work we bring forward empirical evidence that challenges this very notion.<n>We discover a strong dependency on and demonstrate that the training details of a pre-trained model's classification layer play a crucial role.
arXiv Detail & Related papers (2025-03-01T22:25:11Z) - P-TAME: Explain Any Image Classifier with Trained Perturbations [14.31574090533474]
P-TAME (Perturbation-based Trainable Attention Mechanism for Explanations) is a model-agnostic method for explaining Deep Neural Networks (DNNs)<n>It generates high-resolution explanations in a single forward pass during inference.<n>We apply P-TAME to explain the decisions of VGG-16, ResNet-50, and ViT-B-16, three distinct and widely used image classifiers.
arXiv Detail & Related papers (2025-01-29T18:06:08Z) - ConLUX: Concept-Based Local Unified Explanations [14.110188927768736]
toolname is a general framework to provide concept-based local explanations for any machine learning models.
We have instantiated toolname on four different types of explanation techniques: LIME, Kernel SHAP, Anchor, and LORE.
Our evaluation results demonstrate that toolname offers more faithful explanations and makes them more understandable to users.
arXiv Detail & Related papers (2024-10-16T10:34:11Z) - InfoDisent: Explainability of Image Classification Models by Information Disentanglement [10.89767277352967]
We introduce InfoDisent, a hybrid approach to explainability based on the information bottleneck principle.<n>We demonstrate the effectiveness of InfoDisent through computational experiments and user studies across various datasets.
arXiv Detail & Related papers (2024-09-16T14:39:15Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Enhanced Prototypical Part Network (EPPNet) For Explainable Image Classification Via Prototypes [16.528373143163275]
We introduce the Enhanced Prototypical Part Network (EPPNet) for image classification.
EPPNet achieves strong performance while discovering relevant prototypes that can be used to explain the classification results.
Our evaluations on the CUB-200-2011 dataset show that the EPPNet outperforms state-of-the-art xAI-based methods.
arXiv Detail & Related papers (2024-08-08T17:26:56Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
We propose a novel paradigm of incorporating model-specific prior knowledge into Structurals and using them to train generic (simple) models.
As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper- parameters.
For a simple model trained with a Repr, we focus on a VGG-style plain model and showcase that such a simple model trained with a Repr, which is referred to as Rep-VGG, performs on par with the recent well-designed models.
arXiv Detail & Related papers (2022-05-30T16:55:59Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
We study multi-modal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection.
Our approach is motivated by the high-level conceptual similarity of (metric-based) meta-learning and prompt-based learning.
We comprehensively evaluate the proposed multi-modal FSOD models on multiple few-shot object detection benchmarks, achieving promising results.
arXiv Detail & Related papers (2022-04-16T16:45:06Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - This looks more like that: Enhancing Self-Explaining Models by
Prototypical Relevance Propagation [17.485732906337507]
We present a case study of the self-explaining network, ProtoPNet, in the presence of a spectrum of artifacts.
We introduce a novel method for generating more precise model-aware explanations.
In order to obtain a clean dataset, we propose to use multi-view clustering strategies for segregating the artifact images.
arXiv Detail & Related papers (2021-08-27T09:55:53Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets.
We introduce a novel training approach for existing FSC models.
We show that explanation-guided training effectively improves the model generalization.
arXiv Detail & Related papers (2020-07-17T07:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.