Power Allocation for Delay Optimization in Device-to-Device Networks: A Graph Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2505.12902v1
- Date: Mon, 19 May 2025 09:37:00 GMT
- Title: Power Allocation for Delay Optimization in Device-to-Device Networks: A Graph Reinforcement Learning Approach
- Authors: Hao Fang, Kai Huang, Hao Ye, Chongtao Guo, Le Liang, Xiao Li, Shi Jin,
- Abstract summary: This paper explores a novel power power approach for delay optimization, utilizing neural networks (GNNs)-based reinforcement learning (RL) in device-to-device (D2D) communication.<n>The proposed method effectively reduces average delay while ensuring user fairness, outperforms baseline methods, and exhibits and generalization capability.
- Score: 32.49886544394408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pursuit of rate maximization in wireless communication frequently encounters substantial challenges associated with user fairness. This paper addresses these challenges by exploring a novel power allocation approach for delay optimization, utilizing graph neural networks (GNNs)-based reinforcement learning (RL) in device-to-device (D2D) communication. The proposed approach incorporates not only channel state information but also factors such as packet delay, the number of backlogged packets, and the number of transmitted packets into the components of the state information. We adopt a centralized RL method, where a central controller collects and processes the state information. The central controller functions as an agent trained using the proximal policy optimization (PPO) algorithm. To better utilize topology information in the communication network and enhance the generalization of the proposed method, we embed GNN layers into both the actor and critic networks of the PPO algorithm. This integration allows for efficient parameter updates of GNNs and enables the state information to be parameterized as a low-dimensional embedding, which is leveraged by the agent to optimize power allocation strategies. Simulation results demonstrate that the proposed method effectively reduces average delay while ensuring user fairness, outperforms baseline methods, and exhibits scalability and generalization capability.
Related papers
- Opportunistic Routing in Wireless Communications via Learnable State-Augmented Policies [7.512221808783587]
This paper addresses the challenge of packet-based information routing in large-scale wireless communication networks.<n>Opportunistic routing exploits the broadcast nature of wireless communication to dynamically select optimal forwarding nodes.<n>We propose a State-Augmentation (SA) based distributed optimization approach aimed at maximizing the total information handled by the source nodes in the network.
arXiv Detail & Related papers (2025-03-05T18:44:56Z) - Learning State-Augmented Policies for Information Routing in Communication Networks [84.76186111434818]
We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.<n>We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.<n>In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
arXiv Detail & Related papers (2023-09-30T04:34:25Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - ENGNN: A General Edge-Update Empowered GNN Architecture for Radio
Resource Management in Wireless Networks [29.23937571816269]
A key task is to efficiently manage the radio resource by judicious beamforming and power allocation.
We propose an edge-update mechanism, which enables GNNs to handle both node and edge variables.
The proposed method achieves higher sum rate but with much shorter time than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-14T14:04:25Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
Federated learning (FL) could result in task-oriented data traffic flows over wireless networks with limited radio resources.
We propose a novel over-the-air second-order federated optimization algorithm to simultaneously reduce the communication rounds and enable low-latency global model aggregation.
arXiv Detail & Related papers (2022-03-29T12:39:23Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning [61.91604046990993]
This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access network.
In the network, messages intended for users are split into different parts that are a single common part and respective private parts.
arXiv Detail & Related papers (2021-07-01T06:32:49Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies.
We apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.
arXiv Detail & Related papers (2021-05-02T12:43:10Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.